簡易檢索 / 詳目顯示

研究生: 邱旭紳
Hsu-Shen Chiu
論文名稱: IEEE 802.15.4 網路下整合保證時槽之適應性超碼框調整機制研究
Study on Adjustment Scheme for Adapted Superframe with Guaranteed Time Slot (ASGTS) in IEEE 802.15.4 WPAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
吳槐桂
Huai-Kuei Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 無線感測網路IEEE 802.15.4超碼框保證時槽
外文關鍵詞: WSN, IEEE 802.15.4, superframe, GTS
相關次數: 點閱:308下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor network, WSN)是由多個感測節點所組成的一個無線區域型網路架構,是一套可應用在各種不同環境的無線感測應用,例如:健康監控、商業使用、農業環境、家庭或工業自動化等區域型的網路環境。為了滿足前述應用需求,需建置大量的感測節點散佈於各處,因此感測節點就需具備低功耗、低成本、短距離傳輸之能力實現大量部署需求。
    為了實現上述的需求,IEEE提出一套IEEE 802.15.4標準滿足前述所說之環境應用。在標準中,是採用超碼框(superframe)架構來進行資料傳輸。在競爭存取週期時,感測節點利用載波檢測多重存取與碰撞避免(carrier sense multiple access with collision avoidance, CSMA-CA)機制來傳輸資料,但此種方式會因感測節點數量增加或網路負載情形增加時,提高感測節點間碰撞機率,降低網路效能;另外,標準定義了免競爭週期的保證時槽(guaranteed time slot, GTS),來服務固定頻寬需求以及時間急迫性的資料傳輸,此種方式則在節點數量增加、負載增加時,能因避免碰撞問題,而有較佳的網路效能。
    就目前的相關研究來看,皆針對競爭存取週期來進行探討,且透過協調者所收集到的資訊,進行超碼框架構的調整,來提升網路效能,但此種調整方式最終還是受到載波檢測多重存取與碰撞避免機制在網路負載以及感測節點數量增加的情況下,有調整超碼框架構的極限。而若利用免競爭週期的保證時槽機制,將不受載波檢測多重存取與碰撞避免機制的影響,只要感測節點取得時槽利用的許可後,即可將資料傳送出去,提升整體網路效能。
    因此,為了實現上述環境,本論文提出一個整合保證時槽之適應性超碼框調整機制(Adjustment Scheme for Adapted Superframe with Guaranteed Time Slot, ASGTS),利用競爭存取週期低負載情況,有高傳輸的能力,以及免競爭週期高負載情況,能避免碰撞機會產生的特性,再根據協調者收集到的資訊,適應性地超碼框的長度,提升網路效能。從模擬結果可發現,本論文提出的機制,在有效產能上比IEEE 802.15.4標準及先前提出的機制有較好的表現。


    Wireless sensor network (WSN) is a wireless area network architecture composed of multiple sensing nodes. It is a set of wireless sensing applications that can be used in various environments, such as health monitoring, commercial use, agricultural environment, home or industrial automation and other regional network environment. In order to meet the needs of the application, need to build a large number of sensing nodes scattered everywhere, so the sensor nodes need to have the capacity of low power, low cost and short distance transmission to achieve a large number of deployment needs.
    IEEE proposed a set of IEEE 802.15.4 standards to meet the aforementioned environmental applications. In the standard, it uses superframe structure for data transmission. In the contention access period, the sensing node uses carrier sense multiple access with collision avoidance (CSMA-CA) mechanism to transmit data, but this mechanism will raise the probability of collision between sensing nodes and reduce network performance because of the number of sensing nodes or the network load increased. In addition, the standard defines the contention-free period, it uses guaranteed time slot (GTS) to serve the fixed bandwidth requirements and the urgency of the data transmission. This mechanism can avoid collision problems and have better network performance when increasing the number of sensing nodes and the network load increases.
    In the view of current researches are discussed about the contention access period, and through the information collected by the coordinator to adjust the superframe to improve the network performance. But these adjustments will be affected by the CSMA-CA mechanism, which reduces network performance when the number of sensing nodes increases or the network load increases. However, if the guaranteed time slot mechanism is used, it will not be affected by the CSMA-CA mechanism. As long as the sensing node obtains the permission of the slot, the data can be transmitted and enhance overall network performance.
    In order to fulfill the above-mentioned environment, this paper proposes an Adjustment Scheme for Adapted Superframe with Guaranteed Time Slot (ASGTS). With the low network load condition of the contention access period, it has the capability of high transmission, As well as the contention-free period of high network load conditions, to avoid the collision opportunities arising from the characteristics, and then according to the information collected by the coordinator, adaptively over the length of the superframe to improve network performance. From the simulation results can be found that the mechanism proposed in this paper has a better performance on goodput than the IEEE 802.15.4 standard and the previously proposed mechanism.

    摘要 Abstract 誌謝 圖目次 表目次 第一章 緒論 1.1簡介 1.2研究動機與目的 1.3章節概要 第二章 IEEE 802.15.4標準概述 2.1 IEEE 802.15.4標準簡介 2.2 IEEE 802.15.4標準之裝置類別 2.3 IEEE 802.15.4標準之網路拓樸 2.4 IEEE 802.15.4標準之實體層介紹 2.5 IEEE 802.15.4標準之媒介存取控制副層介紹 2.5.1超碼框結構(Superframe) 2.5.2載波檢測多重存取與碰撞避免機制(CSMA-CA) 2.5.3保證時槽配置(GTS allocation) 2.5.4資料傳輸模型(Data transfer model) 2.5.5訊框格式(Frame format) 第三章 ASGTS機制介紹 3.1系統基本架構 3.2保證時槽利用機制說明 3.3適應性超碼框調整機制說明 3.4協調者之流程 3.5感測節點之流程 第四章 系統模擬與結果 4.1模擬環境與參數 4.2效能評估項目 4.2.1有效產能(Goodput) 4.2.2平均傳送延遲時間(Delay) 4.3結果分析與比較 4.3.1有效產能結果分析與比較 4.3.2平均傳送延遲時間結果分析與比較 4.3.3超碼框級數變化結果分析 第五章 結論及未來研究 參考文獻

    [1] B. Shrestha, E. Hossain, S. Camorlinga, R. Krishnamoorthy, and D. Niyato, "An Optimization-Based GTS Allocation Scheme for IEEE 802.15.4 MAC with Application to Wireless Body-Area Sensor Networks," in IEEE International Conference on Communications, 2010, pp. 1-6.
    [2] T. Paso, J. P. Makela, and J. Iinatti, "Enhancing the IEEE 802.15.4 MAC with dynamic GTS allocation for medical applications," in The 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), 2011, pp. 1-5.
    [3] Y. Ding and S. H. Hong, "CFP scheduling for real-time service and energy efficiency in the industrial applications of IEEE 802.15.4," Journal of Communications and Networks, vol. 15, no. 1, pp. 87-101, 2013.
    [4] B. B. Azzouz, B. Mohamed, B. Abdesselam, C. Goursaud, and F. Hutu, "Enhancement optimized MAC protocol for medical applications," in First International Conference on New Technologies of Information and Communication (NTIC), 2015, pp. 1-6.
    [5] G. Belcredi, P. Modernell, N. Sosa, L. Steinfeld, and F. Silveira, "An implementation of a home energy management platform for Smart Grid," in IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015, pp. 270-274.
    [6] C. T. Kone, A. Hafid, and M. Boushaba, "Performance Management of IEEE 802.15.4 Wireless Sensor Network for Precision Agriculture," IEEE Sensors Journal, vol. 15, no. 10, pp. 5734-5747, 2015.
    [7] S. Zhuo, H. Shokri-Ghadikolaei, C. Fischione, and Z. Wang, "Adaptive congestion control in cognitive industrial wireless sensor networks," in IEEE 13th International Conference on Industrial Informatics (INDIN), 2015, pp. 900-907.
    [8] C. Chen, Q. Pei, and X. Li, "A GTS Allocation Scheme to Improve Multiple-Access Performance in Vehicular Sensor Networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1549-1563, 2016.
    [9] "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)," IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp. 1-314, 2011.
    [10] A. Koubaa, M. Alves, and E. Tovar, "A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks," in IEEE International Workshop on Factory Communication Systems, 2006, pp. 183-192.
    [11] B. H. Lee and H. K. Wu, "Study on Backoff Algorithm for IEEE 802.15.4 LR-WPAN," in 22nd International Conference on Advanced Information Networking and Applications, 2008, pp. 403-409.
    [12] B. M. Khan, F. H. Ali, and E. Stipidis, "Improved backoff algorithm for IEEE 802.15.4 wireless sensor networks," in IFIP Wireless Days, 2010, pp. 1-5.
    [13] S. U. Rehman, S. Berber, and A. Swain, "Performance analysis of CSMA/CA algorithm for wireless sensor network," in TENCON IEEE Region 10 Conference, 2010, pp. 2012-2017.
    [14] M. B. Rasheed, N. Javaid, A. Haider, U. Qasim, Z. A. Khan, and T. A. Alghamdi, "An Energy Consumption Analysis of Beacon Enabled Slotted CSMA/CA IEEE 802.15.4," in 28th International Conference on Advanced Information Networking and Applications Workshops, 2014, pp. 372-377.
    [15] K. J. Son, H. Cho, S. H. Hong, S. P. Moon, and T. G. Chang, "New enhanced clear channel assessment method for IEEE 802.15.4 network," in International SoC Design Conference (ISOCC), 2015, pp. 251-252.
    [16] A. Koubaa, M. Alves, and E. Tovar, "i-GAME: an implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks," in 18th Euromicro Conference on Real-Time Systems, 2006, pp. 10 pp.-192.
    [17] Y. K. Huang, A. C. Pang, and H. N. Hung, "An Adaptive GTS Allocation Scheme for IEEE 802.15.4," IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 5, pp. 641-651, 2008.
    [18] C. Hyung Wook, B. Sueng Jae, and M. Y. Chung, "Utilization-aware dynamic GTS allocation scheme in IEEE 802.15.4," in 16th Asia-Pacific Conference on Communications (APCC), 2010, pp. 210-214.
    [19] M. Takaffoli, E. Elmallah, and W. Moussa, "Scheduled Access Using the IEEE 802.15.4 Guaranteed Time Slots," in IEEE International Conference on Communications, 2010, pp. 1-5.
    [20] B. C. Villaverde, S. Rea, and D. Pesch, "D-SeDGAM: A Dynamic Service Differentiation Based GTS Allocation Mechanism for IEEE 802.15.4 WSN," in Seventh International Conference on Information Technology: New Generations, 2010, pp. 852-857.
    [21] C. L. Ho, C. H. Lin, W. S. Hwang, and S. M. Chung, "Dynamic GTS Allocation Scheme in IEEE 802.15.4 by Multi-Factor," in Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2012, pp. 457-460.
    [22] D. C. Huang, H. W. Wu, and Y. W. Lee, "A Cluster-Tree-Based GTS Allocation Scheme for IEEE 802.15.4 MAC Layer," in Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 524-528.
    [23] F. Xia, R. Hao, J. Li, N. Xiong, L. T. Yang, and Y. Zhang, "Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks," Journal of Systems Architecture, vol. 59, no. 10, pp. 1231-1242, 2013.
    [24] M. U. H. A. Rasyid, A. Sudarsono, I. Winarno, and D. D. H. Rupawan, "Guaranteed Time Slot allocation method for IEEE 802.15.4 Wireless Sensor Network," in International Conference on Computer, Control, Informatics and its Applications (IC3INA), 2015, pp. 85-88.
    [25] Y. Zhan and Y. Xia, "A new GTS allocation scheme in IEEE 802.15.4 sensor-actuator networks," in 34th Chinese Control Conference (CCC), 2015, pp. 6640-6645.
    [26] J. Jeon, J. W. Lee, J. Y. Ha, and W. H. Kwon, "DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks," in IEEE 65th Vehicular Technology Conference, 2007, pp. 110-113.
    [27] B. H. Lee and H. K. Wu, "Study on a Dynamic Superframe Adjustment Algorithm for IEEE 802.15.4 LR-WPAN," in IEEE 71st Vehicular Technology Conference, 2010, pp. 1-5.
    [28] C. H. S. Oliveira, Y. Ghamri-Doudane, and S. Lohier, "A duty cycle self-adaptation algorithm for the 802.15.4 wireless sensor networks," in Global Information Infrastructure Symposium, 2013, pp. 1-7.
    [29] H. Rasouli, Y. S. Kavian, and H. F. Rashvand, "ADCA: Adaptive Duty Cycle Algorithm for Energy Efficient IEEE 802.15.4 Beacon-Enabled Wireless Sensor Networks," IEEE Sensors Journal, vol. 14, no. 11, pp. 3893-3902, 2014.
    [30] A. Farhad, Y. Zia, S. Farid, and F. B. Hussain, "A traffic aware dynamic super-frame adaptation algorithm for the IEEE 802.15.4 based networks," in IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 2015, pp. 261-266.
    [31] A. Farhad, S. Farid, Y. Zia, and F. B. Hussain, "A delay mitigation dynamic scheduling algorithm for the IEEE 802.15.4 based WPANs," in International Conference on Industrial Informatics and Computer Systems (CIICS), 2016, pp. 1-5.

    QR CODE