簡易檢索 / 詳目顯示

研究生: 鄭宗棋
Tsung-Chi Cheng
論文名稱: 應用仿生優化深度學習建構都市綠屋頂之植物微生物燃料電池產電預測模式
Applying metaheuristic optimized deep learning to model green energy generation from plant microbial fuel cells
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 于昌平
Chang-Ping Yu
蔡宛珊
Christina Tsai
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 257
中文關鍵詞: 植物微生物燃料電池產電量預測深度學習生物啟發式優化演算法無線感測網路應用
外文關鍵詞: Plant microbial fuel cell, Electricity production prediction, Deep learning, Metaheuristic optimization algorithm, Wireless sensor network application
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物微生物燃料電池(Plant Microbial Fuel Cell, PMFC)係一種新興的綠色能源技術,能持續將太陽能轉化成電能,於建築物屋頂上放置植物微生物燃料電池(PMFC),不僅綠化都市環境,亦產生電力供給城市使用。PMFC產電量性能受多樣環境因素影響,難以精確預估產電量,因此本研究比較人工智慧中的淺層及深層學習技術,應用仿生優化演算法建立PMFC產電量人工智慧預測模型,推估PMFC裝置未來可達的蓄電量。所建置預測模型,係以感測器蒐集2018年3月至6月狼尾草、香蒲、圓葉節節菜的產電數據及其對應的裝置參數與環境因子,在資料預處理過程中剔除不適合草種圓葉節節菜,以狼尾草、香蒲PMFC的裝置、周圍環境參數及產電量共39個因子做為原始訓練資料。本研究原始資料為數值形式,用於淺層學習及時序性深度學習的模型訓練;另以滑動視窗原理建立數值矩陣,進而將數值矩陣轉換成2D圖像格式(image-like data),做為在電腦視覺領域具前瞻發展性的深度卷積神經網路模型之圖像識別資料。分析成果顯示,深度學習卷積神經網路中的EfficientNet為最適配模型,為提升EfficientNet的泛化能力,進而整合生物啟發式優化演算法-水母演算法(Jellyfish Search, JS)決定最佳超參數,建立混合模型JS-EfficientNet。研究成果及效益如下:(1)產電量人工智慧預測模型敏感度分析顯示植物品種、電池裝置參數及環境因子確為影響PMFC產電量。未來研究人員能藉開發之預測模型,控制相關因子變數,避免重複性及不必要的實驗配置,簡化流程及減少成本;(2)能源管理單位及節能單位藉PMFC產電量預測模型,可預先規劃區域PMFC產電量、輔助電力高峰時段;(3)PMFC產電量的預測可應用於自我維持無線感測網路中的DPM與超級電容設計,提供WSN系統預判切換模式,減少資料傳輸錯誤及延長系統壽命。


    Plant Microbial Fuel Cell (PMFC) is an emerging green energy technology that can continuously convert solar energy into electricity. Placing a plant microbial fuel cell (PMFC) on the roof of a building can green the urban environment and generate electricity for use in the city. PMFC electricity production performance is affected by various environmental factors, and is not easy to estimate accurately. Therefore, this study compares shallow and deep learning methods in artificial intelligence; utilizes a metaheuristic optimization algorithm to build a PMFC electricity production artificial intelligence prediction model, and estimates the amount of storage capacity that PMFC devices might reach in the future. The prediction model uses sensors to collect electricity production data, device parameters and environmental factors of Pennisetum alopecuroides, Narrowleaf cattail and Rotala rotundifolia from March to June 2018. In the process of data preprocessing, the unsuitable Rotala rotundifolia is eliminated, and 39 factors, including Pennisetum alopecuroides and Narrowleaf cattail PMFC devices, surrounding environmental parameters and electricity production, are used as the original training data. The original numerical data are used for model training of shallow learning and time-series deep learning. Additionally, a numerical matrix is established based on the sliding window principle, and then converted into a 2D image format (image-like data) as Image recognition data of a forward-looking deep convolutional neural network model in the field of computer vision. Analytical results indicate that EfficientNet using a deep learning convolutional neural network is the most suitable model. To improve the generalization ability of EfficientNet, a metaheuristic optimization algorithm, Jellyfish Search (JS), is added to determine the best hyperparameters, forming a hybrid model JS-EfficientNet. The research results and benefits are as follows. (1) Sensitivity analysis of the Artificial Intelligence prediction model for electricity production demonstrates that plant species, device parameters and environmental factors affect PMFC electricity production. Future research could use the developed predictive model to control the relevant factors and variables, avoid repetitiveness and unnecessary experimental configuration, simplify the process and reduce costs. (2) The energy management unit and the Energy-saving unit can pre-plan the regional PMFC by using the PMFC power generation prediction model Power generation and auxiliary power peak hours. (3) PMFC power generation prediction can be applied to the design of the DPM and supercapacitors in self-sustaining wireless sensing networks, providing a predictive switching mode in the WSN system, lowering data transmission errors and extending system life.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 1.3研究流程與論文架構 3 第二章 文獻回顧 6 2.1植物微生物燃料電池 6 2.2人工智慧於能源電量的預測 8 2.3深層學習技術於時序性數據之應用 9 2.4優化演算法結合深層學習技術 11 第三章 研究方法 12 3.1機器學習 13 3.1.1 線性回歸 13 3.1.2 人工神經網路 13 3.1.3 支援向量機 14 3.1.4 決策回歸樹 15 3.1.5 最近鄰居法 16 3.2深度卷積神經網路(Convolutional Neural Networks, CNN) 16 3.2.1 VGG 20 3.2.2 ResNet 21 3.2.3 Inception 23 3.2.4 DenseNet 26 3.2.5 MobileNet 27 3.2.6 EfficientNet 30 3.3時序性深度學習 33 3.3.1 長短期記憶模型 33 3.3.2 門控循環單元模型 34 3.4水母搜尋啟發式優化演算法(Jellyfish Search, JS) 35 3.5模型驗證及誤差評估準則 39 3.5.1模型驗證 39 3.5.2誤差評估準則 39 3.5.3基準測試函數 40 第四章 資料蒐集與模型建立 42 4.1植物微生物燃料電池(PMFC)資料蒐集與預處理 42 4.1.1實驗裝置 46 4.1.2感測儀器資料收集 47 4.1.3資料預處理 48 4.2模型建立與交叉驗證 51 4.2.1軟體及硬體設備說明 53 4.2.2淺層學習及深層學習技術比較 53 4.2.3水母啟發式優化演算法基準驗證 58 4.2.4混合模型建立 59 4.3分析結果與討論 60 第五章 人工智慧預測PMFC產電量應用與智慧城市綠屋頂系統建置 63 5.1產電量預測模型應用於植物微生物然料電池(PMFC)裝置 63 5.1.1節能單位和能源管理單位層面 63 5.1.2研究人員層面 64 5.2產電量預測模型應用於自我維持無線感測網路 66 5.2.1植物微生物燃料電池(PMFC)結合無線感測網路系統 66 5.2.2 自我維持無線感測網路智慧化設計 67 5.3 智慧城市PMFC綠屋頂之自供電系統展示 68 第六章 結論與建議 70 參考文獻 73 附錄一、模型結構圖 81 附錄二、CNN模型統整表 89 附錄三、PMFC因子屬性表 92 附錄四、植物微生物燃料電池感測器資料 95 附錄五、產電量預測模型Python程式碼 184 附錄六、卷積神經網路模型誤差成果比較 204 附錄七、JS-EfficientNet模型Python程式碼 206 附錄八、PMFC產電量人工智慧預測模型建置手冊 224

    [1] T. E. Bimanatya, "Fossil fuels consumption, carbon emissions, and economic growth in Indonesia," 2018.
    [2] W. Li, M. Yang, R. Long, Z. He, L. Zhang, and F. Chen, "Assessment of greenhouse gasses and air pollutant emissions embodied in cross-province electricity trade in China," Resources, Conservation and Recycling, vol. 171, p. 105623, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.resconrec.2021.105623.
    [3] F. Dong, Y. Wang, B. Su, Y. Hua, and Y. Zhang, "The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization," Resources, Conservation and Recycling, vol. 141, pp. 61-75, 2019/02/01/ 2019, doi: https://doi.org/10.1016/j.resconrec.2018.10.010.
    [4] Y. Jin, H. Wang, Y. Wang, J. Fry, and M. Lenzen, "Material footprints of Chinese megacities," Resources, Conservation and Recycling, vol. 174, p. 105758, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.resconrec.2021.105758.
    [5] E. Gilles, M. Ortiz, M.-Á. Cadarso, F. Monsalve, and X. Jiang, "Opportunities for city carbon footprint reductions through imports source shifting: The case of Bogota," Resources, Conservation and Recycling, vol. 172, p. 105684, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.resconrec.2021.105684.
    [6] M. Ortiz, L.-A. López, and M. Á. Cadarso, "EU carbon emissions by multinational enterprises under control-based accounting," Resources, Conservation and Recycling, vol. 163, p. 105104, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.resconrec.2020.105104.
    [7] M. Höök and X. Tang, "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, vol. 52, pp. 797-809, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.enpol.2012.10.046.
    [8] 經濟部, "能源轉型白皮書," 2020, doi: https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178.
    [9] D. P. Strik, H. Hamelers, J. F. Snel, and C. J. Buisman, "Green electricity production with living plants and bacteria in a fuel cell," International Journal of Energy Research, vol. 32, no. 9, pp. 870-876, 2008.
    [10] R. Nitisoravut and R. Regmi, "Plant microbial fuel cells: A promising biosystems engineering," Renewable and Sustainable Energy Reviews, vol. 76, pp. 81-89, 2017.
    [11] B. S. Ramadan, S. Hidayat, and R. Iqbal, "Plant microbial fuel cells (PMFCs): green technology for achieving sustainable water and energy," Proceedings Book, p. 82, 2017.
    [12] F. T. Kabutey et al., "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, vol. 110, pp. 402-414, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.rser.2019.05.016.
    [13] M. Helder, D. P. Strik, R. A. Timmers, S. M. Raes, H. V. Hamelers, and C. J. Buisman, "Resilience of roof-top plant-microbial fuel cells during Dutch winter," Biomass and Bioenergy, vol. 51, pp. 1-7, 2013.
    [14] M. Acosta-Coll, A. Ospino, S. Carbonell-Navarro, J. Escobar-Duque, R. Peña Gallardo, and R. Zamora-Musa, "Substrate treatment for the increment of electric power potential from plants microbial fuel cells," International Journal of Electrical and Computer Engineering, 2021.
    [15] S. Kataki, S. Chatterjee, M. G. Vairale, S. Sharma, S. K. Dwivedi, and D. K. Gupta, "Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology," Renewable and Sustainable Energy Reviews, vol. 148, p. 111261, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.rser.2021.111261.
    [16] K. Takanezawa, K. Nishio, S. Kato, K. Hashimoto, and K. Watanabe, "Factors affecting electric output from rice-paddy microbial fuel cells," Bioscience, biotechnology, and biochemistry, vol. 74, no. 6, pp. 1271-1273, 2010.
    [17] W. Wang et al., "Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review," Bioresource Technology, vol. 314, p. 123808, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.biortech.2020.123808.
    [18] C.-Y. Guan, Y.-H. Tseng, D. C. W. Tsang, A. Hu, and C.-P. Yu, "Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production," Journal of Hazardous Materials, vol. 365, pp. 137-145, 2019/03/05/ 2019, doi: https://doi.org/10.1016/j.jhazmat.2018.10.086.
    [19] C.-Y. Guan and C.-P. Yu, "Evaluation of plant microbial fuel cells for urban green roofs in a subtropical metropolis," Science of the Total Environment, vol. 765, p. 142786, 2021.
    [20] S. Gourdji, "Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec," Environmental Pollution, vol. 241, pp. 378-387, 2018/10/01/ 2018, doi: https://doi.org/10.1016/j.envpol.2018.05.053.
    [21] I. Jaffal, S.-E. Ouldboukhitine, and R. Belarbi, "A comprehensive study of the impact of green roofs on building energy performance," Renewable energy, vol. 43, pp. 157-164, 2012.
    [22] M. Manso, I. Teotónio, C. M. Silva, and C. O. Cruz, "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, vol. 135, p. 110111, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.rser.2020.110111.
    [23] C. Voyant et al., "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, vol. 105, pp. 569-582, 2017/05/01/ 2017, doi: https://doi.org/10.1016/j.renene.2016.12.095.
    [24] J. Wang, S. Chung, A. AlShelahi, R. Kontar, E. Byon, and R. Saigal, "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, vol. 296, p. 117068, 2021/08/15/ 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117068.
    [25] S. Sen and S. Ganguly, "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, vol. 69, pp. 1170-1181, 2017/03/01/ 2017, doi: https://doi.org/10.1016/j.rser.2016.09.137.
    [26] J. Jeong and H. Kim, "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, vol. 294, p. 116970, 2021/07/15/ 2021, doi: https://doi.org/10.1016/j.apenergy.2021.116970.
    [27] A. Mashlakov, T. Kuronen, L. Lensu, A. Kaarna, and S. Honkapuro, "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting," Applied Energy, vol. 285, p. 116405, 2021/03/01/ 2021, doi: https://doi.org/10.1016/j.apenergy.2020.116405.
    [28] J. Shi, X. Qu, and S. Zeng, "Short-term wind power generation forecasting: Direct versus indirect ARIMA-based approaches," International Journal of Green Energy, vol. 8, no. 1, pp. 100-112, 2011.
    [29] X. Xu, Z. Wei, Q. Ji, C. Wang, and G. Gao, "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, vol. 63, p. 101470, 2019/10/01/ 2019, doi: https://doi.org/10.1016/j.resourpol.2019.101470.
    [30] H. A. Kazem, J. H. Yousif, and M. T. Chaichan, "Modeling of daily solar energy system prediction using support vector machine for Oman," International Journal of Applied Engineering Research, vol. 11, no. 20, pp. 10166-10172, 2016.
    [31] X. Serrano-Guerrero, M. Briceño-León, J.-M. Clairand, and G. Escrivá-Escrivá, "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, vol. 297, p. 117173, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117173.
    [32] M. O. Moreira, P. P. Balestrassi, A. P. Paiva, P. F. Ribeiro, and B. D. Bonatto, "Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting," Renewable and Sustainable Energy Reviews, vol. 135, p. 110450, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.rser.2020.110450.
    [33] V. Nguyen and R. Nitisoravut, "Bioelectricity Generation in Plant Microbial Fuel Cell Using Forage Grass under Variations of Circadian Rhythm, Ambient Temperature, and Soil Water Contents," in 2019 IEEE Asia Power and Energy Engineering Conference (APEEC), 29-31 March 2019 2019, pp. 240-244, doi: 10.1109/APEEC.2019.8720344.
    [34] W. Apollon et al., "Progress and recent trends in photosynthetic assisted microbial fuel cells: A review," Biomass and Bioenergy, vol. 148, p. 106028, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.biombioe.2021.106028.
    [35] A. C. Sophia and S. Sreeja, "Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator," Sustainable Energy Technologies and Assessments, vol. 21, pp. 59-66, 2017.
    [36] C.-Y. Guan and C.-P. Yu, "Evaluation of plant microbial fuel cells for urban green roofs in a subtropical metropolis," Science of The Total Environment, p. 142786, 2020/10/07/ 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.142786.
    [37] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, "Object detection with deep learning: A review," IEEE transactions on neural networks and learning systems, vol. 30, no. 11, pp. 3212-3232, 2019.
    [38] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep learning for computer vision: A brief review," Computational intelligence and neuroscience, vol. 2018, 2018.
    [39] C. Li, Z. Ding, D. Zhao, J. Yi, and G. Zhang, "Building energy consumption prediction: An extreme deep learning approach," Energies, vol. 10, no. 10, p. 1525, 2017.
    [40] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, "Deep learning for visual understanding: A review," Neurocomputing, vol. 187, pp. 27-48, 2016.
    [41] M. Längkvist, L. Karlsson, and A. Loutfi, "A review of unsupervised feature learning and deep learning for time-series modeling," Pattern Recognition Letters, vol. 42, pp. 11-24, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.patrec.2014.01.008.
    [42] N. Somu, G. R. M R, and K. Ramamritham, "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, vol. 261, p. 114131, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.apenergy.2019.114131.
    [43] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, vol. 140, p. 110121, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.chaos.2020.110121.
    [44] A. A. M. Al-Saffar, H. Tao, and M. A. Talab, "Review of deep convolution neural network in image classification," in 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2017: IEEE, pp. 26-31.
    [45] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, "Convolutional neural networks: an overview and application in radiology," Insights into imaging, vol. 9, no. 4, pp. 611-629, 2018.
    [46] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks," Journal of Sound and Vibration, vol. 388, pp. 154-170, 2017/02/03/ 2017, doi: https://doi.org/10.1016/j.jsv.2016.10.043.
    [47] T.-c. Fu, "A review on time series data mining," Engineering Applications of Artificial Intelligence, vol. 24, no. 1, pp. 164-181, 2011/02/01/ 2011, doi: https://doi.org/10.1016/j.engappai.2010.09.007.
    [48] Z. Shen, Y. Zhang, J. Lu, J. Xu, and G. Xiao, "A novel time series forecasting model with deep learning," Neurocomputing, vol. 396, pp. 302-313, 2020/07/05/ 2020, doi: https://doi.org/10.1016/j.neucom.2018.12.084.
    [49] O. B. Sezer and A. M. Ozbayoglu, "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach," Applied Soft Computing, vol. 70, pp. 525-538, 2018.
    [50] H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, "Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105790, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.ijepes.2019.105790.
    [51] V. Suresh, P. Janik, J. Rezmer, and Z. Leonowicz, "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm," Energies, vol. 13, no. 3, p. 723, 2020. [Online]. Available: https://www.mdpi.com/1996-1073/13/3/723.
    [52] T. Serizawa and H. Fujita, "Optimization of convolutional neural network using the linearly decreasing weight particle swarm optimization," arXiv preprint arXiv:2001.05670, 2020.
    [53] I. Strumberger, E. Tuba, N. Bacanin, M. Zivkovic, M. Beko, and M. Tuba, "Designing Convolutional Neural Network Architecture by the Firefly Algorithm," in 2019 International Young Engineers Forum (YEF-ECE), 10-10 May 2019 2019, pp. 59-65, doi: 10.1109/YEF-ECE.2019.8740818.
    [54] J.-S. Chou and D.-N. Truong, "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, vol. 389, p. 125535, 2021.
    [55] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012.
    [56] A. Tardast et al., "Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell," Fuel, vol. 117, pp. 697-703, 2014/01/30/ 2014, doi: https://doi.org/10.1016/j.fuel.2013.09.047.
    [57] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
    [58] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
    [59] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
    [60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.
    [61] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Proceedings of the AAAI Conference on Artificial Intelligence, 2017, vol. 31, no. 1.
    [62] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.
    [63] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708.
    [64] A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.
    [65] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510-4520.
    [66] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," in International Conference on Machine Learning, 2019: PMLR, pp. 6105-6114.
    [67] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    [68] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
    [69] J.-S. Chou and D.-N. Truong, "Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems," Chaos, Solitons & Fractals, vol. 135, p. 109738, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.chaos.2020.109738.
    [70] S. W. Greenhouse and S. Geisser, "On methods in the analysis of profile data," Psychometrika, vol. 24, no. 2, pp. 95-112, 1959.
    [71] D. Karaboga and B. Akay, "A comparative study of artificial bee colony algorithm," Applied mathematics and computation, vol. 214, no. 1, pp. 108-132, 2009.
    [72] M.-Y. Cheng and D. Prayogo, "Symbiotic Organisms Search: A new metaheuristic optimization algorithm," Computers & Structures, vol. 139, pp. 98-112, 2014/07/15/ 2014, doi: https://doi.org/10.1016/j.compstruc.2014.03.007.
    [73] R. V. Rao, V. J. Savsani, and D. Vakharia, "Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems," Computer-Aided Design, vol. 43, no. 3, pp. 303-315, 2011.
    [74] R. Thirumahal and D. A. Patil, "Knn and arl based imputation to estimate missing values," Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 2, no. 3, pp. 119-124, 2014.
    [75] G. E. Batista and M. C. Monard, "A study of K-nearest neighbour as an imputation method," His, vol. 87, no. 251-260, p. 48, 2002.
    [76] A. G. Salman, Y. Heryadi, E. Abdurahman, and W. Suparta, "Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting," Procedia Computer Science, vol. 135, pp. 89-98, 2018.
    [77] K. Ke, S. Hongbin, Z. Chengkang, and C. Brown, "Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network," Evolutionary Intelligence, vol. 12, no. 3, pp. 385-394, 2019.
    [78] R. V. Rao, V. J. Savsani, and D. P. Vakharia, "Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems," Computer-Aided Design, vol. 43, no. 3, pp. 303-315, 2011/03/01/ 2011, doi: https://doi.org/10.1016/j.cad.2010.12.015.
    [79] E. Osorio-de-la-Rosa et al., "Arrays of Plant Microbial Fuel Cells for Implementing Self-Sustainable Wireless Sensor Networks," IEEE Sensors Journal, vol. 21, no. 2, pp. 1965-1974, 2021, doi: 10.1109/JSEN.2020.3019986.
    [80] D. Ayala-Ruiz, A. Castillo Atoche, E. Ruiz-Ibarra, E. Osorio de la Rosa, and J. Vázquez Castillo, "A self-powered PMFC-based wireless sensor node for smart city applications," Wireless Communications and Mobile Computing, vol. 2019, 2019.
    [81] E. Osorio de la Rosa et al., "Plant microbial fuel cells–based energy harvester system for self-powered IoT applications," Sensors, vol. 19, no. 6, p. 1378, 2019.
    [82] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in European conference on computer vision, 2016: Springer, pp. 630-645.
    [83] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.

    無法下載圖示 全文公開日期 2031/09/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE