簡易檢索 / 詳目顯示

研究生: 陳子翔
Tzu-Hsiang Chen
論文名稱: 幾丁聚醣接枝苯胺四聚體水膠應用於傷口癒合之研究
Aniline tetramer-grafted chitosan hydrogels for wound healing applications
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 陳志堅
Jyh-Chien Chen
張志宇
Chih-Yu Chang
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 壓瘡幾丁聚醣苯胺四聚體單寧酸
外文關鍵詞: Pressure ulcers, Chitosan, Aniline tetramer, Tannic acid
相關次數: 點閱:428下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓瘡 (Pressure ulcers, PU) 為臥床不起或行動不便之患者常見的併發症,影響的族群常見有長者及身障人士,除了使其生活品質下降,若治療不當甚至可能導致嚴重感染及死亡。因此,開發針對於 PU 的新療法非常重要。
    近年來應用於組織再生及修復的傷口敷料備受關注,而幾丁聚醣 (Chitosan, CS) 是一種由幾丁質 (Chitin) 水解後得到的多醣,因有助於傷口癒合而受到廣泛研究。CS 已被證明具有抗菌能力,同時具有促進細胞增殖和遷移、血管生成及膠原蛋白合成等特性,使其常應用於促傷口癒合的材料。單寧酸 (Tannic acid, TA) 因擁有生物相容性、抗菌、抗氧化、促進組織修復和製備方法簡單等優勢,被大量的應用在生醫材料中。在本研究中製備了一款新型水凝膠,將苯胺四聚體 (Aniline tetra, AT) 接枝到 CS 上,以戊二醛 (Glutaraldehyde, GA) 為交聯劑形成 CS 接枝 AT 的導電水凝膠 (CS-GA-AT, CGA)。再於水凝膠內搭載 TA 藥物,形成載有 TA 的 CS 接枝 AT 導電水凝膠 (CS-GA-AT-TA, CGAT),以期能進一步提高電刺激 (Electrical stimulation, ES) 對 PU 的治療效果。
    本實驗藉由傅立葉轉換紅外光譜、核磁共振光譜與熱重損失性質分析探討材料接枝前後的化學結構變化,再透過溶脹、形態學、電導率、流變性質及藥物釋放評估水凝膠之性質,結果顯示 CGAT 具有良好的機械性能與生物相容性。綜上所述,使用載有 TA 藥物的 CGA 水凝膠在治療 PU 具有潛力,這些材料的組合應能促進傷口癒合和組織再生,期望未來可以為 PU 治療提供一種有效且方便的新型材料。


    Pressure ulcers (PU) are a common complication for patients who are bedridden or have limited mobility, especially for the elderly and disabled. PU greatly affect their quality of life and may lead to serious infections and even death. Therefore, it is important to develop new treatments for PU. Currently, the main treatments for PU are topical treatment and oral medications.
    In recent years, there has been increasing interest in the use of biomaterials for wound healing and tissue regeneration. Chitosan (CS), a natural polycationic linear polysaccharide derived from chitin, has been widely studied for its ability to facilitate wound healing. CS has been demonstrated to have antimicrobial properties, promoting cell proliferation and migration, angiogenesis and collagen synthesis that make CS a promising material for wound healing.
    Tannic acid (TA) can be prepared easily and possesses biocompatibility, antibacterial properties, antioxidant capabilities and wound-healing effects. In the study, we prepared and characterized the aniline tetra (AT) was grafted on CS using glutaraldehyde (GA). TA was encapsulated in AT-grafted CS (CGA) hydrogel to form (CGAT) hydrogel. The prepared materials were characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The properties of the developed hydrogel were evaluated through swelling, morphology, electrical conductivity, rheological properties, in-vitro drug release study and in-vitro biocompatibility. These results suggested that developed CGAT hydrogel may have potential in the treatment of PU.

    誌謝 I 摘要 II Abstract III 目錄 IV 1 圖目錄 VII 2 表目錄 X 3 縮寫表 XI 第一章 緒論 1 (一) 研究背景與動機 1 (二) 研究目的 1 第二章 理論基礎 3 (一) 致病成因 3 1. 傷口癒合 3 (1) 止血 3 (2) 發炎反應 3 (3) 增生 5 (4) 組織重塑 5 2. 壓瘡 6 (1) 病理生理學 6 (2) 臨床表現 7 3. 活性氧類和氧化壓力於壓瘡的影響 9 4. 抗菌在慢性傷口癒合的角色 12 5. 電刺激在傷口中的影響 13 (二) 預防及治療 17 1. 臨床治療 17 2. 水凝膠 18 (三) 幾丁聚醣 21 (四) 苯胺低聚物 26 (五) 單寧酸 27 第三章 研究方法 30 (一) 實驗藥品 30 (二) 實驗流程 32 (三) 實驗儀器 37 (四) CGAT 水凝膠合成 39 (五) 水凝膠性質分析 40 1. 傅立葉轉換紅外線光譜測試 40 2. 1H 核磁共振光譜測定 40 3. AT 定量測試 41 4. 熱重分析 42 5. 電導度測試 43 6. 小鼠成纖維細胞培養 43 7. 細胞存活率 45 8. TA的藥物濃度標準曲線 45 9. TA 生物相容性測試 46 10. TA 抗氧化測試 46 11. 流變性質測試 48 12. 溶脹試驗 48 13. 形態分析 48 14. 藥物釋放測試 49 15. CGAT 水凝膠對小鼠成纖維細胞毒性測試 52 16. 統計分析方法 52 第四章 結果討論 53 1. 傅立葉轉換紅外線光譜測定 53 2. 1H 核磁共振光譜測定 56 3. AT 定量測試 60 4. 熱重分析 61 5. 電導度測試 64 6. TA 的藥物濃度標準曲線 66 7. TA 生物相容性測試 67 8. TA 抗氧化測試 68 9. 流變性質測試 70 10. 溶脹試驗 72 11. 形態分析 74 12. 藥物釋放 77 13. CGAT 水凝膠對小鼠成纖維細胞毒性測試 83 5 第五章 結論 84 6 第六章 參考文獻 86

    [1] J. Headlam, A. Illsley, Pressure ulcers: an overview, British Journal of Hospital Medicine 81(12) (2020) 1-9.
    [2] J.S. Mervis, T.J. Phillips, Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation, Journal of the American Academy of Dermatology 81(4) (2019) 881-890.
    [3] J.S. Mervis, T.J. Phillips, Pressure ulcers: Prevention and management, Journal of the American Academy of Dermatology 81(4) (2019) 893-902.
    [4] H.N. Wilkinson, M.J. Hardman, Wound healing: Cellular mechanisms and pathological outcomes, Open biology 10(9) (2020) 200223.
    [5] R. Wang, J. Wang, J. Sun, K. Yang, N. Wang, B. Qin, PM2. 5 causes vascular hyperreactivity through the upregulation of the thromboxane A2 receptor and activation of MAPK pathways, Environmental Science and Pollution Research 29(22) (2022) 33095-33105.
    [6] P. Schilrreff, U. Alexiev, Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment, International journal of molecular sciences 23(9) (2022) 4928.
    [7] P.M. Seraphim, E.C. Leal, J. Moura, P. Gonçalves, J.P. Gonçalves, E. Carvalho, Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing, Life Sciences 254 (2020) 117813.
    [8] K. Raziyeva, Y. Kim, Z. Zharkinbekov, K. Kassymbek, S. Jimi, A. Saparov, Immunology of acute and chronic wound healing, Biomolecules 11(5) (2021) 700.
    [9] R. Li, K. Liu, X. Huang, D. Li, J. Ding, B. Liu, X. Chen, Bioactive materials promote wound healing through modulation of cell behaviors, Advanced Science 9(10) (2022) 2105152.
    [10] E. Davison-Kotler, W.S. Marshall, E. García-Gareta, Sources of collagen for biomaterials in skin wound healing, Bioengineering 6(3) (2019) 56.
    [11] S. Kumar, T. Theis, M. Tschang, V. Nagaraj, F. Berthiaume, Reactive oxygen species and pressure ulcer formation after traumatic injury to spinal cord and brain, Antioxidants 10(7) (2021) 1013.
    [12] L.E. Edsberg, J.M. Black, M. Goldberg, L. McNichol, L. Moore, M. Sieggreen, Revised national pressure ulcer advisory panel pressure injury staging system: revised pressure injury staging system, Journal of Wound, Ostomy, and Continence Nursing 43(6) (2016) 585.
    [13] S. Polaka, P. Katare, B. Pawar, N. Vasdev, T. Gupta, K. Rajpoot, P. Sengupta, R.K. Tekade, Emerging ROS-modulating technologies for augmentation of the wound healing process, ACS omega 7(35) (2022) 30657-30672.
    [14] R.S. Ferrari, C.F. Andrade, Oxidative stress and lung ischemia-reperfusion injury, Oxidative medicine and cellular longevity 2015 (2015).
    [15] N. Van Damme, A. Van Hecke, E. Remue, K. Van den Bussche, Z. Moore, A. Gefen, S. Verhaeghe, D. Beeckman, Physiological processes of inflammation and edema initiated by sustained mechanical loading in subcutaneous tissues: a scoping review, Wound Repair and Regeneration 28(2) (2020) 242-265.
    [16] T.H. Quan, S. Benjakul, T. Sae-leaw, A.K. Balange, S. Maqsood, Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications, Trends in Food Science & Technology 91 (2019) 507-517.
    [17] J. Zeng, G. Du, X. Shao, K.-N. Feng, Y. Zeng, Recombinant polyphenol oxidases for production of theaflavins from tea polyphenols, International journal of biological macromolecules 134 (2019) 139-145.
    [18] H. Nakamura, A. Sekiguchi, Y. Ogawa, T. Kawamura, R. Akai, T. Iwawaki, T. Makiguchi, S. Yokoo, O. Ishikawa, S.-i. Motegi, Zinc deficiency exacerbates pressure ulcers by increasing oxidative stress and ATP in the skin, Journal of dermatological science 95(2) (2019) 62-69.
    [19] R. Serra, R. Grande, L. Butrico, A. Rossi, U.F. Settimio, B. Caroleo, B. Amato, L. Gallelli, S. De Franciscis, Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus, Expert review of anti-infective therapy 13(5) (2015) 605-613.
    [20] Q. Li, F. Lu, G. Zhou, K. Yu, B. Lu, Y. Xiao, F. Dai, D. Wu, G. Lan, Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing, Biomacromolecules 18(11) (2017) 3766-3775.
    [21] Y. Yang, Y. Liang, J. Chen, X. Duan, B. Guo, Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing, Bioactive materials 8 (2022) 341-354.
    [22] M.S. Refat, K. Elsabawy, A. Alhadhrami, A.S. Almalki, M.Y. El-Sayed, R.F. Hassan, Development of medical drugs: synthesis and in vitro bio-evaluations of nanomedicinal zinc–penicillins polymeric hydrogel membranes for wound skin dressing by new chemical technology, Journal of Molecular Liquids 255 (2018) 462-470.
    [23] R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Materials Science and Engineering: C 73 (2017) 456-464.
    [24] C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, X. Wang, P.K. Chu, S. Wu, Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@ AgCl/ZnO nanostructures, ACS nano 11(9) (2017) 9010-9021.
    [25] Y. Zhang, Q. Dang, C. Liu, J. Yan, D. Cha, S. Liang, X. Li, B. Fan, Synthesis, characterization, and evaluation of poly (aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing, International journal of biological macromolecules 102 (2017) 457-467.
    [26] J. Hoque, R.G. Prakash, K. Paramanandham, B.R. Shome, J. Haldar, Biocompatible injectable hydrogel with potent wound healing and antibacterial properties, Molecular pharmaceutics 14(4) (2017) 1218-1230.
    [27] H. Wang, X. Shi, D. Yu, J. Zhang, G. Yang, Y. Cui, K. Sun, J. Wang, H. Yan, Antibacterial activity of geminized amphiphilic cationic homopolymers, Langmuir 31(50) (2015) 13469-13477.
    [28] H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu, G. Lan, F. Dai, F. Lu, An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing, Carbohydrate polymers 201 (2018) 522-531.
    [29] Y. Zhang, M. Jiang, Y. Zhang, Q. Cao, X. Wang, Y. Han, G. Sun, Y. Li, J. Zhou, Novel lignin–chitosan–PVA composite hydrogel for wound dressing, Materials Science and Engineering: C 104 (2019) 110002.
    [30] M. Omidi, A. Yadegari, L. Tayebi, Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel, RSC advances 7(18) (2017) 10638-10649.
    [31] M.D. Romić, M.Š. Klarić, J. Lovrić, I. Pepić, B. Cetina-Čižmek, J. Filipović-Grčić, A. Hafner, Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing, European Journal of Pharmaceutics and Biopharmaceutics 107 (2016) 67-79.
    [32] J.M. Gregoriades, A. Madaris, F.J. Alvarez, F.J. Alvarez-Leefmans, Genetic and pharmacological inactivation of apical Na+-K+-2Cl− cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter, American Journal of Physiology-Cell Physiology 316(4) (2019) C525-C544.
    [33] M. Verdes, K. Mace, L. Margetts, S. Cartmell, Status and challenges of electrical stimulation use in chronic wound healing, Current Opinion in Biotechnology 75 (2022) 102710.
    [34] R. Luo, J. Dai, J. Zhang, Z. Li, Accelerated skin wound healing by electrical stimulation, Advanced Healthcare Materials 10(16) (2021) 2100557.
    [35] T.E. Serena, L. Gould, K. Ousey, R.S. Kirsner, Reliance on clinical signs and symptoms assessment leads to misuse of antimicrobials: post hoc analysis of 350 chronic wounds, Advances in Wound Care 11(12) (2022) 639-649.
    [36] B.A. Durand, C. Pouget, C. Magnan, V. Molle, J.-P. Lavigne, C. Dunyach-Remy, Bacterial interactions in the context of chronic wound biofilm: A Review, Microorganisms 10(8) (2022) 1500.
    [37] L. Jaffe, S.C. Wu, Dressings, topical therapy, and negative pressure wound therapy, Clinics in Podiatric Medicine and Surgery 36(3) (2019) 397-411.
    [38] H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, J. Wang, A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing, RSC advances 8(14) (2018) 7533-7549.
    [39] Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing, ACS nano 15(8) (2021) 12687-12722.
    [40] M.E. Abd El-Hack, M.T. El-Saadony, M.E. Shafi, N.M. Zabermawi, M. Arif, G.E. Batiha, A.F. Khafaga, Y.M. Abd El-Hakim, A.A. Al-Sagheer, Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, International Journal of Biological Macromolecules 164 (2020) 2726-2744.
    [41] P. Feng, Y. Luo, C. Ke, H. Qiu, W. Wang, Y. Zhu, R. Hou, L. Xu, S. Wu, Chitosan-based functional materials for skin wound repair: Mechanisms and applications, Frontiers in Bioengineering and Biotechnology 9 (2021) 650598.
    [42] J. Luan, X. Wei, Z. Li, W. Tang, F. Yang, Z. Yu, X. Li, Inhibition of Chitosan with Different Molecular Weights on Barley-Borne Fusarium graminearum during Barley Malting Process for Improving Malt Quality, Foods 11(19) (2022) 3058.
    [43] P. Poznanski, A. Hameed, W. Orczyk, Chitosan and Chitosan Nanoparticles: Parameters Enhancing Antifungal Activity, Molecules 28(7) (2023) 2996.
    [44] A. Onaran, Y. Bayar, T. Karakurt, K. Tokatlı, M. Bayram, Y. Yanar, Antifungal activity of chitosan against soil-borne plant pathogens in cucumber and a molecular docking study, Journal of Taibah University for Science 15(1) (2021) 852-860.
    [45] K.G. Dilruba Öznur, T.D. Ayşe Pınar, Statistical evaluation of biocompatibility and biodegradability of chitosan/gelatin hydrogels for wound-dressing applications, Polymer Bulletin (2023) 1-34.
    [46] J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review, Am. J. Polym. Sci 4(2) (2014) 25-31.
    [47] V. Balan, L. Verestiuc, Strategies to improve chitosan hemocompatibility: A review, European Polymer Journal 53 (2014) 171-188.
    [48] J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma, B. Guo, Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing, Chemical Engineering Journal 362 (2019) 548-560.
    [49] W. Yan, M. Shi, C. Dong, L. Liu, C. Gao, Applications of tannic acid in membrane technologies: A review, Advances in Colloid and Interface Science 284 (2020) 102267.
    [50] C. Chen, H. Yang, X. Yang, Q. Ma, Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review, RSC advances 12(13) (2022) 7689-7711.
    [51] S. Guo, Y. Ren, R. Chang, Y. He, D. Zhang, F. Guan, M. Yao, Injectable self-healing adhesive chitosan hydrogel with antioxidative, antibacterial, and hemostatic activities for rapid hemostasis and skin wound healing, ACS Applied Materials & Interfaces 14(30) (2022) 34455-34469.
    [52] W. Pan, X. Qi, Y. Xiang, S. You, E. Cai, T. Gao, X. Tong, R. Hu, J. Shen, H. Deng, Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing, International Journal of Biological Macromolecules 195 (2022) 190-197.
    [53] W. Jing, C. Xiaolan, C. Yu, Q. Feng, Y. Haifeng, Pharmacological effects and mechanisms of tannic acid, Biomedicine & Pharmacotherapy 154 (2022) 113561.
    [54] Y. Chen, J. Tang, S. Wang, L. Zhang, Ninhydrin-functionalized chitosan for selective removal of Pb (II) ions: Characterization and adsorption performance, International Journal of Biological Macromolecules 177 (2021) 29-39.
    [55] K. Sirivibulkovit, S. Nouanthavong, Y. Sameenoi, based DPPH assay for antioxidant activity analysis, Analytical sciences 34(7) (2018) 795-800.
    [56] Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao, S. Xie, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles, The AAPS journal 12 (2010) 263-271.
    [57] G. Martínez-Mejía, N.A. Vázquez-Torres, A. Castell-Rodríguez, J.M. del Río, M. Corea, R. Jiménez-Juárez, Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (2019) 123658.
    [58] Q. Wei, K. Chen, X. Zhang, G. Ma, W. Zhang, Z. Hu, Facile preparation of polysaccharides-based adhesive hydrogel with antibacterial and antioxidant properties for promoting wound healing, Colloids and Surfaces B: Biointerfaces 209 (2022) 112208.
    [59] Y. Wang, B. Yan, A. Abbaspourrad, Y. Cheng, Improved photostability of folic acid by the radical-scavenging effect of tannic acid, Lwt 142 (2021) 111050.
    [60] E. Bacaita, B. Ciobanu, M. Popa, M. Agop, J. Desbrieres, Phases in the temporal multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels, Physical Chemistry Chemical Physics 16(47) (2014) 25896-25905.
    [61] J. Zuo, Y. Gao, N. Bou-Chacra, R. Löbenberg, Evaluation of the DDSolver software applications, BioMed research international 2014 (2014).

    無法下載圖示 全文公開日期 2033/09/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE