簡易檢索 / 詳目顯示

研究生: 莊孟翰
MENG-HAN - CHUANG,
論文名稱: 評估殼聚醣衍生物次微米顆粒包覆超順磁性氧化鐵和阿黴素作為對肝癌的pH應答遞送載體治療
Evaluation of chitosan derivative microparticles encapsulating superparamagnetic iron oxide and doxorubicin as a pH-sensitive delivery carrier on hepatic carcinoma treatment
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 許維君
Wei-Chun Hsu
李嘉甄
Chia-Chen Li
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 棕櫚酰殼聚醣(NPCS)阿黴素(DOX)電噴霧pH 應答型肝癌
外文關鍵詞: N-palmitoyl chitosan (NPCS), Drug doxorubicin (DOX), pH-sensitive, Hepatic carcinoma
相關次數: 點閱:325下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將棕櫚酰殼聚醣(NPCS)、超順磁氧化鐵奈米顆粒(SPIO)、抗癌藥物阿黴素
    (DOX) 利用電噴霧技術製備一種新型的藥物載體微米顆粒。NPCS 的特性透過核
    磁共振光譜(NMR)以及膨潤性測試所製備的殼聚醣改質物具有pH 標靶的特性。
    DOX-SPIO/NPCS 微米顆粒的顆粒型態以及粒徑尺寸利用穿透式以及掃描式電子
    顯微鏡進行分析。結果顯示在電噴霧中使用甲酸/丙酮複合溶劑在顆粒的成形效
    果相較於純甲酸溶劑較好。所製備的微米顆粒的粒徑尺寸為185 ± 87 nm。之後
    利用傅立葉紅外線光譜(FT-IR)鑑定DOX-SPIO/NPCS 顆粒材料表面性質,所製備
    的微米顆粒經過電噴霧技術不會改變材料的性質。在穿透式電子顯微鏡(TEM)
    以及核磁共振T2影像(MRI)分析結果其超順磁氧化鐵奈米顆粒(SPIO)成功被包覆
    於微米顆粒載體中。在體外藥物釋放實驗中,DOX-SPIO/NPCS 藥物載體顆粒相
    較於鹼性環境中酸性環境(pH 6.5)會加速藥物的釋放量。微米顆粒在細胞毒性分
    析(MTT 測試)中顯示DOX-SPIO/NPCS 微米顆粒相較於藥物DOX具有更好的抗
    腫瘤能力,除此之外,當DOX-SPIO/NPCS 微米顆粒包覆5μg/mL DOX 藥物在
    酸性環境(pH 6.5)中相較於鹼性環境中能更有效殺死HepG2 肝癌細胞。綜合以上
    解結果所製備的DOX-SPIO/NPCS 微米顆粒具有相當的潛力作為pH 應答型藥物
    傳輸系統應用於肝癌的治療。


    A novel pH-sensitive drug delivery micro-particles, based on N-palmitoyl
    chitosan (NPCS) using electrospray technology to transport the superparamagnetic iron oxide (SPIO) and anticancer drug doxorubicin (DOX) was developed. The characteristic of NPCS was characterized by nuclear magnetic resonance(NMR) and swelling testing, it showed that modified chitosan had pH-targeted property. The morphology and size of the DOX-SPIO/NPCS micro-particles were investigated by transmission and scanning electron microscopy. Based on using different vaporization properties of electrospray solvent showed formic acid/acetone co-solvent has better
    particle forming ability than formic acid solvent alone in suspension collection. The micro-particles had the diameters in 185 ± 87 nm. Materials surface properties of DOX-SPIO/NPCS micro-particles, was confirmed using Fourier Transform Infrared Spectroscopy (FTIR) to make sure that using electrospray technology will not change the materials properties. Transmission electron microscopy (TEM) and nuclear magnetic resonance T2 imaging(NMRI) confirmed the SPIO in composite micro-particles. In drug release profile, we found the DOX-SPIO/NPCS drug delivery micro-particles was accelerated in acidic environment (pH 6.5). Micro-particles in
    cytotoxicity assay (MTT assay) showed that DOX-SPIO/NPCS micro-particles has
    better anti-tumor ability than that of DOX freeform. Additionally, micro-particles were loaded 5 μg/mL DOX in acidic environment (pH 6.5) to kill HepG2 cell effectively. The DOX-SPIO/NPCS micro-particles could be potentially applied as pH sensitive drug delivery system for Hepatic carcinoma therapy.

    中文摘要.................................................................. I 英文摘要................................................................. II 全名與縮寫對照表 ......................................................... IV 致謝...................................................................... V 目次..................................................................... VI 圖次..................................................................... IX 表次.................................................................... XII 第1 章 緒論............................................................... 1 1-1. 前言................................................................. 1 1-2. 實驗動機與目的........................................................ 1 1-3. 實驗流程與架構........................................................ 2 第2 章 文獻回顧............................................................ 4 2-1. 肝癌................................................................. 4 2-1.1 肝癌................................................................ 4 2-1.2 肝癌療法與抗癌藥物.................................................... 5 2-1.3 阿黴素(Doxorubicin, DOX) ........................................... 8 2-2. 奈米科技的應用與製備技術............................................... 9 2-2.1 奈米藥物於醫學上的應用................................................ 9 2-2.2 電噴霧製備技術...................................................... 11 2-3. 生物醫學材料簡介...................................................... 13 2-3.1 殼聚醣與棕櫚酰殼聚醣(N-palmitoyl Chitosan, NPCS) .................... 13 2-3.2 超順磁氧化鐵(Super Paramagnetic Iron Oxide, SPIO) .................. 14 2-3.3 pH 應答型材料於癌症環境 ............................................. 15 第3 章 材料與研究方法 ..................................................... 20 3-1. 實驗藥品............................................................. 20 3-2. 實驗儀器............................................................. 22 3-3. 電噴霧技術製備DOX-SPIO/NPCS 顆粒 ..................................... 24 3-4.1 製備棕櫚酰殼聚醣(N-palmitoyl Chitosan, NPCS) ........................ 24 3-4.2 製備DOX-SPIO/NPC 藥物載體顆粒 ....................................... 24 3-4. NPCS 物理性質分析.................................................... 25 3.4.1 核磁共振光譜(Nuclear Magnetic Resonance, NMR) ...................... 25 3.4.2 不同酸鹼條件下NPCS 膨潤性質.......................................... 25 3-5. 電噴霧DOX-SPIO/NPCS 顆粒材料分析 ..................................... 26 3-5.1 利用傅立葉紅外光譜(Fourier-Transform Infrared Spectrometer, FT-IR)化學結構分析........................................................ 26 3-5.2 電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 於DOX-SPIO/NPCS 顆粒型態分析 ............................................. 26 3-5.3 使用穿透式電子顯微鏡(Transmission electron microscope, TEM)進 行DOX-SPIO/NPCS 顆粒尺寸分析 ............................................. 27 3-5.4 核磁共振T2 影像成像實驗(Nuclear Magnetic Resonance Imaging, NMRI) ...................................................................27 3-6. 阿黴素標準曲線建立................................................... 28 3-7. 阿黴素包覆率計算........... 28 3-8. DOX-SPIO/NPCS 顆粒之體外釋放曲線 .................................... 29 3-9. 肝癌細胞株HEPG2 .................................................... 30 3-9.1 細胞種類........................................................... 30 3-9.2 細胞培養基配置...................................................... 30 3-9.3 細胞培養........................................................... 31 3-9.4 冷凍細胞........................................................... 32 3-9.5 活化細胞........................................................... 32 3.9.6 細胞計數........................................................... 32 3-10. 體外抗腫瘤細胞療效試驗評估........................................... 33 3-10.1 不同藥物濃度對於腫瘤細胞之影響...................................... 34 3-11 實驗統計分析........................................................ 34 第4 章 結果與討論 ....................................................... 35 4-1. NPCS 物理性質分析 .................................................. 35 4-1.1 核磁共振光譜分析.................................................... 35 4-1.2 不同pH 值下NPCS 的體積變化 ......................................... 36 4-2. DOX-SPIO/NPCS 顆粒材料性質分析 ...................................... 38 4-2.1 FT-IR 分析結果與討論 ............................................... 38 4-2.2 SEM 顆粒型態分析 ................................................... 39 4-2.3 TEM 分析結果與討論 ................................................. 41 4-2.4 MRI 實驗結果與討論 ................................................. 41 4-3. 阿黴素藥物包覆率計算.................................................. 43 4-4. DOX-SPIO/NPCS 顆粒體外釋放曲線測試與分析 ............................. 44 4-5. 體外抗腫瘤細胞療效試驗評估............................................ 46 第5 章 結論.............................................................. 48 第6 章 未來展望.......................................................... 50 參考文獻................................................................. 51

    1. 劉鐘軒, 蔡正中, and 陳海雄, 肝癌的診斷及治療最新發展. 內科學誌,2013. 24(2): p. 85-94.
    2. 張育霖 and 曹書儀, 概述非酒精性脂肪肝病與肝癌之關聯. 內科學誌, 2016. 27(4): p. 195-201.
    3. 林志陵 , 高., 肝癌的流行病學. 中華民國癌症醫學會雜誌, 2008. 24: p.277-281.
    4. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric
    nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces,
    2010. 75(1): p. 1-18.
    5. Bosch, F.X., et al., Primary liver cancer: Worldwide incidence and trends.Gastroenterology, 2004. 127(5): p. S5-S16.
    6. Marrero, J.A., et al., Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology, 2005. 41(4): p. 707-16.
    7. Li, J., et al., Nomograms for survival prediction in patients undergoing liver resection for hepatitis B virus related early stage hepatocellular carcinoma.Eur J Cancer, 2016. 62: p. 86-95.
    8. Pusen Wang, H.L., Baojie Shi, Weitao Que, Chunguang Wang, Junwei and Z.P.
    Fan, Lin Zhong, Prognostic factors in patients with recurrent hepatocellular
    carcinoma treated with salvage liver transplantation a singlecenter study.
    Oncotarget, 2016. 7.
    9. Lin, S.-M., Percutaneous radiofrequency ablation for hepatocellular
    carcinoma. J Chin Oncol Soc, 2008. 24: p. 289-94.
    10. HUANG, Z.-q., Radiofrequency ablation for hepatocellular carcinoma:
    surgeon’s views. Medical Journal of Chinese People's Liberation Army, 2013.
    38(5): p. 339-341.
    11. Livraghi, T., et al., Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology, 2008. 47(1): p. 82-9.
    12. Kajihara, J., et al., The Clinical Impact of Transcatheter Arterial
    Chemoembolization (TACE)-Induced c-Met Upregulation on TACE
    Refractoriness in Hepatocellular Carcinoma. Dig Dis Sci, 2016. 61(6): p.
    1572-81.
    13. Chong, D.Q., et al., The evolving landscape of therapeutic drug development for hepatocellular carcinoma. Contemp Clin Trials, 2013. 36(2): p. 605-15.
    14. 陳昭姿, Sorafenib (Nexavar®)-台灣第一個晚期肝癌治療藥物. 當代醫學, 2010(441): p. 515-518.
    15. 汪徽五, <抗癌藥品的奈米給藥傳輸 - 財團法人醫藥品查驗中心.pdf>.RegMed, 2012. 26.
    16. Tan, M.L., P.F. Choong, and C.R. Dass, Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol, 2009. 61(2): p.131-42.
    17. Tewey, K.M., et al., Intercalative antitumor drugs interfere with the
    breakage-reunion reaction of mammalian DNA topoisomerase II. Journal of
    Biological Chemistry, 1984. 259(14): p. 9182-9187.
    18. Deffie, A.M., J.K. Batra, and G.J. Goldenberg, Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer research, 1989. 49(1): p. 58-62.
    19. Soares, P.I., et al., Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydr Polym, 2016. 147: p.304-12.
    20. Kang, Y.J., et al., Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. Journal of Clinical Investigation,1997. 100(6): p. 1501.
    21. Ascensão, A., et al., Endurance training attenuates doxorubicin-induced
    cardiac oxidative damage in mice. International journal of cardiology, 2005.
    100(3): p. 451-460.
    22. Songsurang, K., et al., Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of
    doxorubicin. Arch Pharm Res, 2011. 34(4): p. 583-92.
    23. 張立德, 奈米材料. 2002: 五南圖書出版股份有限公司.
    24. 高逢時, 奈米科技. 科學發展, 第三百八十六期, 第 66-71 頁, 2005.
    25. 尹邦躍, 奈米時代. 2002: 五南圖書出版股份有限公司.
    26. Paszko, E., et al., Nanodrug applications in photodynamic therapy.
    Photodiagnosis Photodyn Ther, 2011. 8(1): p. 14-29.
    27. Liu, Z., et al., Polysaccharides-based nanoparticles as drug delivery systems.Advanced drug delivery reviews, 2008. 60(15): p. 1650-1662.
    28. Agnihotri, S.A., N.N. Mallikarjuna, and T.M. Aminabhavi, Recent advances
    on chitosan-based micro- and nanoparticles in drug delivery. J Control
    Release, 2004. 100(1): p. 5-28.
    29. Gharsallaoui, A., et al., Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 2007. 40(9): p.1107-1121.
    30. Huang, K.S., et al., Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Control Release, 2009.137(1): p. 15-9.
    31. Almeria, B., T.M. Fahmy, and A. Gomez, A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. JControl Release, 2011. 154(2): p. 203-10.
    32. Zamani, M., M.P. Prabhakaran, and S. Ramakrishna, Advances in drug
    delivery via electrospun and electrosprayed nanomaterials. Int J
    Nanomedicine, 2013. 8: p. 2997-3017.
    33. Nam, J.P., et al., Targeting delivery of tocopherol and doxorubicin
    grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo
    evaluation. Colloids Surf B Biointerfaces, 2015. 133: p. 254-62.
    34. Balan, V., et al., Doxorubicin-loaded magnetic nanocapsules based on
    N-palmitoyl chitosan and magnetite: Synthesis and characterization. Chemical
    Engineering Journal, 2015. 279: p. 188-197.
    35. Chiu, Y.L., et al., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009. 30(28): p. 4877-88.
    36. Chiu, Y.-L., et al., Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 2009.5(5): p. 962.
    37. Thorek, D.L., et al., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006. 34(1): p. 23-38.
    38. Chen, Y.W., et al., Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonanceimaging. Int J Nanomedicine, 2015. 10: p. 6997-7018.
    39. Belin, T., et al., Influence of Grain Size, Oxygen Stoichiometry, and Synthesis Conditions on the γ-Fe2O3 Vacancies Ordering and Lattice Parameters.Journal of Solid State Chemistry, 2002. 163(2): p. 459-465.
    40. Wang, Y.-X.J., S.M. Hussain, and G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European radiology, 2001. 11(11): p. 2319-2331.
    41. Arruebo, M., et al., Magnetic nanoparticles for drug delivery. Nano today,2007. 2(3): p. 22-32.
    42. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs):development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev, 2011. 63(1-2): p. 24-46.
    43. Du, J.Z., et al., Tailor-made dual pH-sensitive polymer-doxorubicin
    nanoparticles for efficient anticancer drug delivery. J Am Chem Soc, 2011.
    133(44): p. 17560-3.
    44. Ganta, S., et al., A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release, 2008. 126(3): p. 187-204.
    45. Zong, W., et al., Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J Microencapsul, 2016. 33(3): p. 257-62.
    46. Tığlı Aydın, R.S. and M. Pulat, 5-Fluorouracil Encapsulated Chitosan
    Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled
    Release Kinetics. Journal of Nanomaterials, 2012. 2012: p. 1-10.
    47. Cai, G. and C. Mao, A facile way to fabricate pH-sensitive charge-conversion polymeric nanoparticles with tunable pH conversion point. RSC Advances, 2016. 6(37): p. 31410-31416.
    48. Gui, R., Y. Wang, and J. Sun, Embedding fluorescent mesoporous silica
    nanoparticles into biocompatible nanogels for tumor cell imaging and
    thermo/pH-sensitive in vitro drug release. Colloids and Surfaces B:
    Biointerfaces, 2014. 116: p. 518-525.
    49. Jin, Y.-H., et al., pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2012. 94: p. 184-191.
    50. Li, F., et al., Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydrate Polymers, 2009. 77(4): p.773-778.
    51. Vivek, R., et al., pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 117-123.
    52. Aydin, R. and M. Pulat, 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of Nanomaterials, 2012. 2012: p. 42.
    53. Saboktakin, M.R., et al., Synthesis and characterization of pH-dependent
    glycol chitosan and dextran sulfate nanoparticles for effective brain cancer
    treatment. International journal of biological macromolecules, 2011. 49(4): p. 747-751.
    54. Sahu, S.K., et al., In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. Journal of Materials Science: Materials in Medicine, 2010. 21(5): p. 1587-1597.
    55. Madhusudhan, A., et al., Efficient pH Dependent Drug Delivery to Target
    Cancer Cells by Gold Nanoparticles Capped with Carboxymethyl Chitosan.International Journal of Molecular Sciences, 2014. 15(5): p. 8216.
    56. Hu, X., Y. Wang, and B. Peng, Chitosan‐Capped Mesoporous Silica
    Nanoparticles as pH‐Responsive Nanocarriers for Controlled Drug Release.
    Chemistry–An Asian Journal, 2014. 9(1): p. 319-327.
    57. Lim, E.-K., et al., Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy.Nanoscale research letters, 2013. 8(1): p. 1.
    58. Zhang, J., et al., Self-assembled nanoparticles based on hydrophobically
    modified chitosan as carriers for doxorubicin. Nanomedicine:
    Nanotechnology, Biology and Medicine, 2007. 3(4): p. 258-265.
    59. Qiu, G.H., et al., Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology, 2015. 67(1): p. 1-12.
    60. van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay. Methods Mol Biol, 2011. 731: p. 237-45.
    61. Ragona, L., et al., Bovine [beta]-lactoglobulin: Interaction studies with palmitic acid. Protein Science, 2000. 9(07): p. 1347-1356.
    62. Boonsongrit, Y., B.W. Mueller, and A. Mitrevej, Characterization of
    drug–chitosan interaction by 1H NMR, FTIR and isothermal titration
    calorimetry. European Journal of Pharmaceutics and Biopharmaceutics, 2008.
    69(1): p. 388-395.
    63. Kulkarni, N., P. Wakte, and J. Naik, Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharm Investig, 2015. 5(2): p. 73-80.
    64. Naghibi, S., et al., Mortality response of folate receptor-activated,
    PEG–functionalized TiO2 nanoparticles for doxorubicin loading with andwithout ultraviolet irradiation. Ceramics International, 2014. 40(4): p.
    5481-5488.
    65. Chen, L., et al., A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. Journal of Materials Chemistry B, 2015. 3(46): p. 8949-8962.
    66. Smith, B.C., Group Wavenumbers and an Introduction to the Spectroscopy of Benzene Rings. Spectroscopy, 2016. 31(3): p. 34-37.
    67. Arya, N., et al., Electrospraying: a facile technique for synthesis of
    chitosan-based micro/nanospheres for drug delivery applications. J Biomed
    Mater Res B Appl Biomater, 2009. 88(1): p. 17-31.
    68. Zhang, M., et al., Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 2002. 23(13): p. 2641-2648.
    69. Chakraborty, S., et al., Electrohydrodynamics: a facile technique to fabricate
    drug delivery systems. Advanced drug delivery reviews, 2009. 61(12): p.
    1043-1054.
    70. Xu, X., et al., Ultrafine PEG–PLA fibers loaded with both paclitaxel and
    doxorubicin hydrochloride and their in vitro cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 72(1): p. 18-25.
    71. Torchilin, V.P., Structure and design of polymeric surfactant-based drug
    delivery systems. Journal of Controlled Release, 2001. 73(2–3): p. 137-172.
    72. Iversen, T.-G., T. Skotland, and K. Sandvig, Endocytosis and intracellulartransport of nanoparticles: Present knowledge and need for future studies.Nano Today, 2011. 6(2): p. 176-185.73. Verma, A. and F. Stellacci, Effect of surface properties on nanoparticle-cell interactions. Small, 2010. 6(1): p. 12-21.

    無法下載圖示 全文公開日期 2022/02/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE