簡易檢索 / 詳目顯示

研究生: 馮偉豪
Wei-Hao Feng
論文名稱: 陽極氧化鋁模板輔助真空壓鑄法製備銅鍺過共晶奈米線金屬間化合物/半導體材料異質結構微觀特性之研究
Fabrication and Characterizations of Copper-Germanium Hypereutectic (Cu3Ge/Ge) Nanowire Heterostructures by Using Vacuum Hydraulic Pressure Injection Method with Anodic Aluminum Oxide
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 王秋燕
Chiu-Yen Wang
陳建仲
Chien-Chon Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 金屬/半導體異質結構銅鍺合金奈米線陽極氧化鋁
外文關鍵詞: metal/semiconductor heterostructure, copper-germanium alloy, nanowire, anodic aluminum oxide
相關次數: 點閱:201下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將Cu-Ge二元過共晶合金利用陽極氧化鋁(AAO)輔助模板真空液壓鑄造法,可以獲得Cu3Ge/Ge兩種材料順序相接且界面清晰的Cu-Ge合金奈米線異質結構。第一步使用高純度鋁片(99.999%)浸泡至過氯酸(15%)-乙醇(70%)-單丁醚乙醇(15%)混和溶液中經由電壓40V進行30分鐘電解拋光。接著於草酸中利用電壓50V進行兩天的陽極處理,得到直徑均90 nm具有良好奈米孔洞陣列之氧化鋁。第二步,將氧化鋁作為模板配合先前製備的Cu0.55Ge0.45過共晶合金塊材,在高溫攝氏750度下真空壓鑄成直徑90 nm的Cu0.55Ge0.45合金奈米線。綜合OM及XRD分析,得到Cu0.55Ge0.45合金塊材為Cu3Ge與Ge兩相共存的晶體結構。接著,為了比較Cu0.55Ge0.45合金奈米線退火前後之差異,將兩種樣品於SEM的微觀形態與EDS分析,驗證Cu0.55Ge0.45合金奈米線具有Cu與Ge元素不同分布的兩種段狀結構。且退火奈米線有更平整的分段界面。經TEM繞射分析,確認合金奈米線的兩分段分別為Cu3Ge與Ge的晶體結構,證明壓鑄法能夠成功實現與原合金塊材成份相同的奈米線,且內部的各相均屬於單晶結構。此外,在TEM的EDS分析中發現退火奈米線的Ge分段有更少的Cu含量。使得退火Cu0.55Ge0.45合金奈米線更加符合金屬/半導體的異質結構。


    In this study, heterostructure Cu0.55Ge0.45 nanowires were fabricated by vacuum hydraulic pressure injection molding with anodic aluminum oxides (AAOs) template. First, in order to establish a mirror-like surface, high purity aluminum sheets (99.999%) were electropolished in the solution composed of perchloric acid (15%) - ethanol (70%) - monobutylether ethanol (HOCH2CH2OC4H9) (15%) at 40 V for 30 minutes. The electropolished specimens were anodized in oxalic acid at 50 V for two days, and then AAOs with nanopore array having a diameter of 90 nm were obtained. In the second step, via vacuum injection molding process, Cu0.55Ge0.45 hypereutectic alloy was heated to 750 °C and filled into AAO template. After removing AAO in etching solution, Cu0.55Ge0.45 nanowires with diameter of 90 nm were hence obtained. Based on OM and XRD results, the crystal structure of Cu0.55Ge0.45 bulk material is determined as Ge/Cu3Ge coexisting phases. Next, comparing Cu0.55Ge0.45 nanowires before and after annealing treatments, SEM and EDS results show that Ge and Cu elements tend to form Ge and Cu-Ge segments. TEM was further used to confirm two different segments of the nanowires are Cu3Ge and Ge, respectively. It was proved that vacuum injection molding process can be used to successfully multiple the original bulk material to nanowires, in which each segment is of single crystalline structure. It was found that the Ge segment of annealed nanowires had less copper content; thus, annealed Cu0.55Ge0.45 nanowires are closer to metal/semiconductor heterostructure.

    誌謝 II 摘要 VII ABSTRACT VIII 目錄 IX 圖目錄 XII 第1章 介紹 1 1.1 前言 1 1.1.1 奈米科技的演進 1 1.1.2 奈米線異質結構及在半導體製程的發展 2 1.1.3 熱力學的兩相分離 3 1.2 研究動機 4 第2章 文獻回顧與實驗原理 5 2.1 CU-GE合金系統 5 2.1.1 Cu3Ge晶體結構 5 2.1.2 Cu3Ge於半導體基板上之性質 6 2.1.3 Cu-Ge共晶合金 7 2.1.4 Cu-Ge過共晶合金 8 2.2 非黃光製程的奈米材料製造 10 2.3 鋁的陽極氧化處理 11 2.3.1 陽極氧化鋁發展背景 11 2.3.2 鋁的電化學拋光 12 2.3.3 電化學拋光之變因 13 2.3.4 多孔型陽極氧化鋁成長機制 14 2.3.5 陽極氧化鋁成長參數 16 2.4 真空液壓鑄造(VACUUM HYDRAULIC PRESSURE INJECTION METHOD) 19 第3章 實驗方法與儀器 22 3.1 實驗整體流程圖 22 3.2 AAO模板的製備 22 3.2.1 鋁材前處理 22 3.2.2 電化學拋光 22 3.2.3 第一次陽極氧化 23 3.2.4 移除一次陽極氧化鋁膜 24 3.2.5 第二次陽極氧化 24 3.2.6 去除鋁基板 24 3.2.7 AAO擴孔處理 25 3.3 AAO模具輔助真空壓鑄法 25 3.3.1 Cu0.55Ge0.45合金塊材熔煉 25 3.3.2 Cu0.55Ge0.45合金奈米線/AAO複合膜的製備方法 26 3.3.3 去除AAO模板 27 3.4 量測儀器與使用藥品 28 3.4.1 分析儀器 28 3.4.2 儀器基本原理 28 3.4.3 使用藥品種類及其他設備 31 第4章 結果與討論 32 4.1 AAO輔助模板 32 4.1.1 一次陽極氧化鋁表面分析 32 4.1.2 二次陽極氧化鋁表面形貌 34 4.2 CU0.55GE0.45合金塊材分析 35 4.2.1金相分析 35 4.2.2 XRD分析 37 4.3 CU0.55GE0.45合金奈米線 38 4.3.1 奈米線/AAO複合膜 38 4.3.2 未退火合金奈米線微觀結構 40 4.3.2 退火合金奈米線微觀結構 43 4.3.3 未退火合金奈米線晶體結構分析 46 4.3.4 退火合金奈米線晶體結構分析 50 第5章 結論與未來展望 54 第6章 參考文獻 56

    [1] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 1993, 363, 603.
    [2] Z. L. Wang, “Nanowires and nanobelts – materials, properties and devices; Vol-I: Metal and semiconductor nanowires,” Kluwer Academic Publisher, 2003.
    [3] P. Yang and C. M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities,” Science, 1996, 273, 1836.
    [4] Z. L. Wang, “Nanowires and nanobelts – materials, properties and devices; Vol-II: Nanowires and nanobelts of functional materials,” Kluwer Academic Publisher, 2003.
    [5] 馬振基主編, “奈米材料科技原理與應用”, 全華科技圖書, 2003
    [6] 張立德、牟季美著, “奈米材料與奈米結構”, 滄海書局, 2002
    [7] 莊萬發編撰,“超微粒子理論應用”, 復漢出版社, 1995
    [8] G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. Bradley and K. G. Kornev, “Carbon Nanotubes Loaded with Magnetic Particles”, Nano Letters, 2005, 5, 879-884.
    [9] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P. L. McEuen, Nano Lett. 2002, 28, 869.
    [10] Z. Yao, C. L. Kane, C. Dekker, Phys. Rev. Lett. 2000, 84, 2941.
    [11] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Avouris, Ph. Appl.Phys. Lett. 1998, 73, 2447.
    [12] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Avouris, Ph. Appl. Phys. Lett. 2002, 80, 3817.
    [13] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, Avouris, Ph. Phys. Rev. Lett. 2001, 87, 256805.
    [14] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2000,409, 66.
    [15] Y. Cui, X. Duan, J. Hu, C. M. J. Lieber, Phys. Chem. B 2000, 104, 5213.
    [16] Y. Huang, X. Duan, J. Cui, J. Lauhon, K. H. Kim, C. M. Lieber, Science 2001, 294, 1313.
    [17] E. M. CONWELL, “High Field Mobility in Gerisianium with Impurity Scattering Dominant”, Physical Review, 1953, 90, 769-772.
    [18] W. C. John, “Phase Separation by Spinodal Decomposition in Isotropic Systems”, the Journal of Chemical Physics, 1965, 42, 93-99.
    [19] H. Jiaqi, K. Nardeep, Z. B. Matthew, H. Y. Chiu, D. He, Y. Wang and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures”, Nature Communications, 2014.
    [20] D. J. Lockwood, L. Pavesi, Silicon Photonics; Topics in Applied Physics; Springer: Berlin Heidelberg, 2004, 1−50.
    [21] X. Duan, Y. Huang, C. M. Lieber, Nano Lett. 2002, 2, 487.
    [22] A. Javey, S. Nam, R. S. Friedman, H. Yan, C. M. Lieber, NanoLett. 2007, 7, 773.
    [23] Y. Cui, C. M. Lieber, Science 2000, 291, 891.
    [24] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nat.Biotechnol. 2005, 23, 1294.
    [25] S. Gradecak, F. Qian, Y. Li, H. Park, C. M. Lieber, Appl. Phys. Lett. 2005, 87, 173111.
    [26] C. J. Barrelet, R. Agarwal, C. M. Lieber, Nano Lett. 2005, 5, 917.
    [27] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C. M. Lieber, Nature 2006, 441, 489.
    [28] W. Lu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber, Proc. Nat.Acad. Sci. U.S.A. 2005, 102, 10046
    [29] P. Antony Premkumar, L. Carbonell, M. Schaekers, K. Opsomer, C. Adelmann, O. Richard,H. Bender,A. Franquet, J. Meersschaut, L. Wen, T. Zsolt, S.Van Elshocht. ”Low temperature chemical vapour synthesis of Cu3Ge thin films for interconnect applications” Microelectronic Engineering 2014, 120, 246–250
    [30] N. Wang, J. R. Gao and B. Wei‚ “PRIMARY PHASE GROWTH WITHIN HIGHLY UNDERCOOLED Cu-Ge EUTECTIC ALLOYS “Scripta Materialia, Vol. 41, No. 9, pp. 959–965, 1999
    [31] W. Zhai, D. L. Geng, W. L. Wang, B. Wei, “A calorimetric study of thermodynamic properties for binary Cu–Ge alloys”, Applied Physics, Northwestern Polytechnical University, Xi’an 710072, PR China
    [32] L. K. Elbaum, M. O. Aboelfotoh, Appl. Phys. Lett. 58 (1991) 1341–1343.
    [33] J. P. Doyle, B. G. Svensson, M. O. Aboelfotoh, J. Appl. Phys. 80 (1996) 2530–2532.
    [34] H. H. Liang, J. S. Luo, W. T. Lin, Mater. Sci. Semicond. Proc. 4 (2001) 233–235.
    [35] G. Guizetti, F. Marabelli, P. Pellegrino, A. Sassella, J. Appl. Phys. 79 (1996) 8115–8117.
    [36] D. Kumar, R. D. Vispute, O. Aboelfotoh, S. Oktyabrysky, K. Jagannadham, J. Narayan, J. Electron. Mater. 25 (1996) 1760–1766.
    [37] L. J. Chen, C. S. Liu, J. B. Lai, Mat. Sci. Semicond. Proc. 7 (2004) 143–156.
    [38] H. K. Liou, J. S. Huang, K. N. Tu, Appl. Phys. 77 (1995) 5443–5445.
    [39] S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, C. Lavoie, J. Vac. Sci. Technol. A 24 (2006) 474–485.
    [40] J. P. Doyle, B. G. Svensson, M. O. Aboelfotoh and J. Hudner, “An investigation of the stability of copper germanide thin film in the presence of Si and SiO2”, Physica Scripta. Vol.T54, 297-299, (1994)
    [41] W. Kurz, D. J. Fisher, Int. Metal. Rev. 1979, 24, 177.
    [42] J. Glazer, Int. Mater. Rev. 1995, 40, 65.
    [43] F. R. Mollard, M. C. Flemings, Trans. Met. Soc. AIME 1967, 239, 1526.
    [44] D. B. Spencer, R. Merhabian, and M. C. Flemings, Metall. Trans. 3, 1972, 1925–1932
    [45] R. Leon, P. M. Petroff, D. Leonard, and S. Fafard, “Spatially resolved visible luminescence of self-assembled semiconductor quantum dots, ”Science, vol. 267, pp. 1966-1968, 1995.
    [46] D. Bimberg, N. N. Ledentsov, N. Kirstaedter, O. Schmidt, M. Grundman, V. M. Ustinov, A. Yn. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, S. S. Ruvimov, U. Gosele, and J. Heydenreich, “InAs-GaAs quantum dot lasers: In situ growth, radiative lifetimes, and polarization properties,” in Proc. SSDM ’95 ht. Conf, Osaka, Japan, 1995, Ext. Abstr., Paper S-VI-I, pp. 716-718.
    [47] R. Notzel, J. Temmyo, A. Kozen, T. Tamamura, T. Fukui, and H. Hasegawa, “Odered quantum dots: A new self-organizing growth mode on high-index semiconductor surfaces,” in Proc. SSDM ’95 Int. Conf., Osaka, Japan, 1995, Ext. Abstr., Paper S-VI-1, pp. 770-772.
    [48] G. A. Ozin, “Nanochemistry: Synthesis in diminishing dimensions,” Adv. Mat., vol. 4, pp. 612-648, 1992.
    [49] C. Frantz, N. Stein, Y. Zhang, E. Bouzy, O. Picht, M. E. Toimil-Molares, C. Boulanger, Electrochimica Acta 69 (2012) 30–37.
    [50] D. AI. Mawlawi, C. Z. Liu, and M. Moskovits, “Nano-wires formed in anodic oxide nanotemplates,” J. Mater. Res., vol. 9, pp. 1014-1018, 1994; D. AI-Mawlawi, C. Douketis, T. Bigioni, M. Moskovits, D. Routkevitch, L. Ryan, T. Haslett, A. Williams, J. M. Xu, “Electrochemical fabrication of metal and semiconductor nano-wire arrays,” in Proc. Symp. Nanostrucrured Mater. Electrochem., 187th Meeting Electrochem. Soc., Reno, NV, May 21-26, 1995. Pennington, NJ: The Electrochem. Soc., vol. 95, no. 8, pp. 262-273, 1995.
    [51] F. Li, L. Zhang, and R. M. Metzger,”On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater. 10, 2470(1998)
    [52] S. Setoh, A. Miyata, Sci. Pap. Inst. Phys. Chem. Res. (Jpn.), 1932
    [53] A. Belwalkar, E. Grasing,W. Van Geertruyden,, Z. Huang,W.Z. Misiolek,”Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes” Journal of Membrane Science 319 (2008) 192–198
    [54] C. Wagner ” Contribution to the Theory of Electropolihing” J.Electrochem.Soc.101, 225(1954)
    [55] H. Adelkhani, S. Nasoodi and A. H. Jafari, “A study of the Morphology and Optical Properties of Electropolished Aluminum in the Vis-IR region”, Int. J. Electrochem. Sci. 4, 238(2009)
    [56] V. V. Yuzhakov, H. C. Chang and A. E Miller, “Pattern formation during electropolishing”, Phys. Rev. B. 56, 12608(1997)
    [57] G. E. Thompson, G. C.Wood, “Anodic films on aluminum,” in Corrosion:Aqueous Processes and Passive Films—Treatise of Material Science Technology, J. C. Scully, Ed, NewYork: Academic Press 23, 205( 1983)
    [58] V. P. Parkhutik, V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium”, J. Phys. D: Appl. Phys. 25, 1258 (1992)
    [59] O. Jessensky, F. Mu¨ ller and U. Go¨sele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, App. Phys. Lett. 72, 1173 (1998)
    [60] Shimizu, K., Kobayashi, K., Thompson, G.E. and Wood, G.C. (1992) Phil. Mag. A, 66, 643–652.
    [61] P. CHOWDHURY, K. RAGHUVARAN, M. KRISHNAN, HARISH. C. BARSHILIA and K. S. RAJAM, ” Effect of process parameters on growth rate and diameter of nano-porous alumina templates” Bull. Mater. Sci., Vol. 34, No. 3, June 2011, pp. 423–427
    [62] O. Jessensky, F. Mu¨ ller, U. Go¨sele, ”Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett. 72, 10(1998)
    [63] C.C. Chen, C.G. Kuo, J.H. Chen, C.G. Chao, Jpn. J. of Appl. Phys. 2004, 43, 8354.
    [64] C.C. Chen, Y. Bisrat, Z.P. Luo, R.E. Schaak, C.G. Chao, D.C. Lagoudas, Nanotechnology 2006, 17, 367.
    [65] C.C. Chen, C.G. Kuo, C.G. Chao, Jpn. J. Appl. Phys. 2005, 44, 1524.
    [66] J.H. Chen, C.G. Chao, J.C. Ou, T.F. Liu, Surface Science 2007, 601, 5142.
    [67] J.H. Chen, S.C. Lo, C.G. Chao, T.F. Liu, J. Nanosci. Nanotechnol. 2008, 8, 967.
    [68] S.H. Chen, C.C. Chen, Z.P. Luo, C.G. Chao, Materials Letters 2009, 63, 1165.
    [69] S.H Chen, C.C. Chen, C.G. Chao, Journal of Alloys and Compounds 2009, 481, 270.
    [70] Z. Zhibo and Y.Y. Jackie, J. Mater. Res. 1998, 13, 1745
    [71] C.C. Chen, Y. Bisrat, Z.P. Luo, R.E. Schaak, C.G. Chao, D.C. Lagoudas, Nanotechnology 2006, 17, 367.

    QR CODE