簡易檢索 / 詳目顯示

研究生: 呂芳駿
Fang-Chun LU
論文名稱: VLS機制成長二氧化錫奈米線暨微結構與元件特性分析
Vapor-Liquid-Solid (VLS) Growth, Microstructure Analysis and Device Characterization of Tin Dioxide Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
none
陳士勛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 77
中文關鍵詞: 二氧化錫氣-液-固奈米線場校電晶體
外文關鍵詞: tin dioxide, VLS, nanowire, FET transitior
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化錫(SnO2)是一種知名的n-type半導體其應用範圍非常廣泛,而其奈米線(nanowires)由於擁有一維奈米材料的特殊性質非常適合進行研究,本實驗的二氧化錫奈米線是藉由熱蒸鍍法(thermal vapor deposition method)來成長,為了避免奈米線的直徑分布不均,成長方式由VLS(vapor-liquid-solid)來控制直徑大小,利用熱蒸鍍法來成長奈米線會受到很多因素影響,所以本實驗對於這些因素包含:溫度、成長、時間、前驅物份量、壓力、前驅物與基板(成長區)距離和金膜厚度,做出一系列的對照實驗來歸類出這些因素對於奈米線之成長有何影響,並藉由這些參數的控制來長出所需要尺寸的奈米線,利用TEM, SEM, XRD, Raman, UV-Vis光譜進行材料檢測。再近一步的製作場效電晶體元件(FET),利用黃光製程來進行元件製作,而所得元件其表現不輸給目前所發表論文上記載的元件。


    Tin dioxide(SnO2) is well-know and useful n-type semiconductor. The SnO2 nanowires have the special property because of its one dimensional nanostructure. Therefore, SnO2 nanowires is worth to research. Tin dioxide nanowires were grown by the thermal vapor deposition method and vapor-liquid-solid mechanism were grown nanowires with uniform diameters, because Au catalyst can control diameter of nanowire. Many parameters would affect the growth of nanowire. These parameters include temperature (source area), flow rate, pressure, source mass, grow time, distance between the source, growth area and the thickness of gold films. The purpose of this study is to find the relationship between the nanowire’s growth and these parameters. Also, by controlling these parameters to grow the nanowires with specific size. Using the TEM, SEM, XRD, Raman, UV-Vis spectrum and CL spectrum to examine the structure and fabricating the FET device by photolithography process. The performance of un-doped single SnO2 nanowire device is comparable to literatures report.

    摘要 I Abstract II 致謝 III List of Acronyms and Abbreviations IX Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.2 SnO2: Properties and Nanostructures 2 1.2.1 Structural and Properties of SnO2 2 1.2.2 Nanostructures and Applications of SnO2 2 1.3 Growth Mechanisms 3 1.3.1 Vapor-Liquid-Solid Growth Mechanism 3 1.3.2 Vapor-Solid Growth Mechanism 5 1.3.3 Solution-Liquid-Solid Growth Mechanism 6 1.4 The Electrical Properties of SnO2 7 1.5 Measuring the Electric Property of the Single Nanowire 8 1.5.1 Measuring Electrical Property by Depositing Electrode 10 Chapter 2 Experimental Procedures 13 2.1 Growth of the SnO2 Nanowire 13 2.2 Fabrication of the FET Device 14 2.2.1 Putting the Nanowire 14 2.2.2 Photolithography Process 15 2.2.3 Depositing the Electrode 15 2.2.4 Depositing the Electrode by FIB 16 2.3 Measurement of Electrical 16 2.4 Scanning Electron Microscope (SEM) Observation 16 2.5 Preparation of Samples for Transmission Electron Microscope (TEM) Observation 17 2.6 Transmission Electron Microscope Observation 17 2.7 Energy Dispersive Spectrometer (EDS) Analysis 18 2.8 X-Ray Diffractometer 18 2.9 Raman Spectrum Analysis 19 2.10 UV-Vis Spectrum Analysis 19 2.11 CL Spectrum Analysis 20 Chapter 3 Result and Discussion 22 3.1 The Influence of Growth Nanowires 22 3.1.1 Growth Temperature 23 3.1.2 The Mass of Precursor 25 3.1.3 Distance (The Sample at The Same Crucible) 27 3.1.4 Environment of Pressure 29 3.1.5 Temperature of Growth (Substrate) Area 31 3.1.6 The Thickness of Au Film 33 3.2 Phase Identification and Structural Examination 35 3.2.1 SEM and TEM Analysis 35 3.2.2 XRD Analysis 40 3.2.3 Raman Analysis 40 3.3 UV-Vis Reflectance Spectrum and CL Spectrum Analysis 42 3.4 Electrical Analysis 44 Chapter 4 Conclusion 66 Chapter 5 Future Works 67 Reference 68

    [1] G. E. Moore “Cramming more components onto integrated circuits,” Electronics, 1965, 38, 114.
    [2] "Excerpts from a conversation with Gordon Moore: Moore’s Law". Intel Corporation, 2005.
    [3] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film,” Adv. Mater., 2009, 21, 2767.
    [4] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science, 1999, 286, 1550.
    [5] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, 2001, 409, 66.
    [6] L. J. Chen, “Silicon nanowires: key building block for future electronics,” J. Mater. Chem. 2007, 17, 4639.
    [7] J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater,. 2007, 19, 781.
    [8] Z. L. Wang, “Nanowires and nanobelts materials, properties and devices, metal and semiconductor nanowires, vol. I,” Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.
    [9] Y. C. Chang, and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C, 2007, 111, 1268
    [10] J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beak-like SnO2 nanorods with strong photoluminescent and field emission Properties,” Small, 2006, 2, 116.
    [11] K. M. Li, Y. J. Li, M. Y. Lu, C. Y. Kuo, and L. J. Chen, “Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties,” Adv. Funct. Mater., 2009, 19, 2453.
    [12] Q. Wan, E. N. Dattoli, and W. Lu, “Transparent metallic Sb-doped SnO2 nanowires,” Appl. Phys. Lett., 2007, 90, 222107
    [13] Y. J. Li, C. Y. Wang, M. Y. Liu, K. M. Li, and L. J. Chen, “Electrodeposited hexagonal ring-like superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties,” Crystal Growth & Design, 2008, 8, 2598.
    [14] J. B. Cui, and U. J. Gibon, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays,” Appl. Phys. Lett., 2005, 87, 133108.
    [15] J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc., 2005, 127, 16376.
    [16] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, "Structure and electronic properties of carbon nanotubes," J. Phys. Chem. B, 2000, 104, 2794
    [17] Z. L. Wang, “Characterizing the structure and properties of individual wire-like nanoentities,” Adv. Mater., 2000, 12, 1295.
    [18] J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of nanotube/nanowire heterojunctions,” Nature, 1999, 399, 48
    [19] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science, 2007, 316, 102.
    [20] Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire Arrays,” Science, 2006, 312, 242
    [21] T. C. Karni, B. P. Timko, L. E. Weiss, and C. M. Lieber, "Flexible electrical recording from cells using nanowire transistor arrays," Proc. Natl. Acad. Sci., USA 2009, 106, 7309
    [22] B. Yuhas, and P. Yang, “Nanowire-based all-oxide solar cell,” J. Am. Chem. Soc., 2009, 131, 3756
    [23] S. Vandenbrouck, K. Madjour, D. Theron, Y. J. Dong, Y. Li, C. M. Lieber, and C. Gaquiere, “12 GHz F-MAX GaN/AlN/ AlGaN nanowire MISFET, ” IEEE Electron Dev. Lett., 2009, 30, 322
    [24] W. Gopel, and K. D. Schierbaum, “SnO2 sensors-current status and future prospects,” Sens. Actuators B., 1995, 26, 1.
    [25] F. Ding, Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition,” J. Electrochem. Soc., 1999, 146, 3554
    [26] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin oxide nanowires, nanoribbons, and nanotubes,” J. Phys. Chem. B, 2001, 106, 1274
    [27] Y Liu, H Dong, and M. L. Liu, “Well-aligned nano-box-beams of SnO2,” Adv. Mater., 2004, 16, 353
    [28] X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, L. I. Chen, and T. H. Wang, “One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power Lithium ion batteries,” J. Phys. Chem. C, 2010, 114, 8084.
    [29] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, and M. Zha, “Tin oxide nanobelts electrical and sensing properties,” Sens. Act. B, 2004, 111-112, 2-6.
    [30] S. H. Luo, J. Y. Fan, W. L. Liu, M. Zhang, Z. T. Song, C. L. Lin, X. L. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology, 2006, 17, 1695.
    [31] Q. Wan, E. N. Dattoli, and W. Lu, “Transparent metallic Sb-doped SnO2 nanowires,” Appl. Phys. Lett., 2007, 90, 222107.
    [32] Y. Cheng, P. Xiong, L. Fields, J. P. Zheng, R. S. Yang,P Pand Z. L. Wang, “Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors,” Appl. Phys. Lett., 2006, 89, 093114.
    [33] P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, M. K. Sunkara, and K. Mahendra, “Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries,” Nano lett., 2009, 9, 612
    [34] H. J. Snaith, Henry, and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano lett., 2010, 10, 1259
    [35] A. Kock, A. Tischner, T. Maier, M. Kast, C. Edtmaier, C. Gspan, and G. Kothleitner, “Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection,” Sens. Actu. B, 2009, 138, 160.
    [36] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 1964, 4, 89.
    [37] E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett., 2010, 10, 1163
    [38] Y. Yan, L. Zhou, J. Zhang, H. Zeng, Y. Zhang, and L. Zhang, “Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism,” J. Phys. Chem. C, 2008, 112, 10412
    [39] S. Shukla, V. Venkatachalapathy, and S. Seal, “Thermal evaporation processing of nano and submicron tin oxide rods,” J. Phys. Chem. B, 2006, 110, 11210.
    [40] J. H. He, J. H. Hsu, H. N. Lin, L. J. Chen, and Z. L. Wang, “Pattern and feature designed growth of ZnO nanowire arrays for vertical devices,” J. Phys. Chem. B, 2006, 110, 50.
    [41] J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen, and Z. L. Wang, “Synthesis of Si-Ge oxide nanowires via the transformation of Si-Ge thin films with self-assembled Au catalysts,” Electrochem. Solid State Lett., 2005, 8, 254.
    [42] P.Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Growth of light-emitting Silicate nanowires on individual Au particles in self-assembled hexagonal Au particle networks,” Appl. Phys. Lett., 2005, 87, 163101.
    [43] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du, “Crystalline gallium oxide nanowires: intensive blue light emitters,” Chem. Phys. Lett., 2000, 328, 5.
    [44] Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, 2001, 291, 1947.
    [45] S. S. Brenner and G. W. Sears, “Mechanism of whisker growth-iii nature of growth sites,” Acta Met., 1956, 4, 268
    [46] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S.Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Comm., 1999, 109, 677.
    [47] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, 2001, 292, 1897.
    [48] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-Liquid-Solid growth of crystalline iii-v semiconductors: an analogy to vapor-liquid-solid growth,” Science, 1995, 270, 1791.
    [49] X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, “Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate,” Nano Lett., 2003, 3, 93.
    [50] A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys., 1998, 83, 1049.
    [51] H. Ohnishi, Y. Kondo, and K. Takayanagi, “Quantized conductance through individual rows of suspended gold atoms,” Letters to Nature., 1998, 395, 780.
    [52] Y. Long, Z. Chen, W. Wang, F. Bai, A. J. and C. Gu, “Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth,” Applied Physics Letters, 2005, 86, 153102-1.
    [53] A. Bachtold, M. Henny, C. Terrier, C. Strunk, and C. Schonenberher, J.-P. Salvetat, J.-M. Bonard, and L. Forro, “Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements,” Applied Physics Letters, 1998, 73, 274.
    [54] J. F. Scott, J. Chem. Phys., 1970, 33, 852 1970.
    [55] L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Roumyantseva, “Structural characterization of nanocrystalline sno2 by x-ray and raman spectroscopy,” J. Solid State Chem., 1998, 135, 78.
    [56] M. Ocana and C. J. Serna, “Variations of the infrared powder spectra of TiO2 and SnO2 (rutile) with polarization,” Spectrochim. Acta, Part A, 1991, 47, 765.
    [57] M. K. Joo, J. Huh, M. Mouis, S. J. Park, D. Y. Jeon, D. Jang, J. H. Lee, G. T. Kim, and G. Ghibaudo. “Channel access resistance effects on charge carrier mobility and low-frequency noise in a polymethyl methacrylate passivated SnO2 nanowire field-effect transistors,”. Appl. Phys. Lett., 2013, 102, 053114 .
    [58] D. Kim, Y. K. Kim, S. C. Park, J. S. Ha, J. Huh, J. Na, and G. T. Kim. “Photoconductance of aligned SnO2 nanowire field effect transistors,”. Appl. Phys. Lett., 2014, 104, 111909.
    [59] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu. “Fully transparent thin-film transistor devices based on sno2 nanowires.”. Nano Letters, 2007, 7, 2463.
    [60] Q. Wan, E. Dattoli, and W. Lu. “Doping-dependent electrical characteristics of Sno2 nanowires.” Small, 2008, 4, 451.
    [61] J. Sun, H. Liu, J. Jiang, A. Lub and Q. Wan. “Low-voltage transparent SnO2 nanowire transistors gated by microporous SiO2 solid-electrolyte with improved polarization response.” J. Mater. Chem, 2010, 20, 8010.
    [62] R. E. Presley, C. L. Munsee, C-H Park, D. Hong, J. F. Wager and D. A. Keszler “Tin oxide transparent thin-film transistors” J. Phys. D: Appl. Phys., 2004, 37, 2810
    [63] Z. M. Jarzebski and J. P. Marton. “Physical Properties of SnO2 Materials” J. Electrochem. Soc., 1976, 123, 199
    [64] Z. Liu, D. Zhang, S. Han, C. Li, T. Tang,W. Jin, X. Liu, B. Lei andC. Zhou. “Laser ablation synthesis and electron transport studies of tin oxide nanowires” Advanced Materials, 2003, 15, 1754.
    [65] M. Batzill, and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci, 2005, 79, 47.
    [66] G. Salviati, 1, L. Lazzarini1, M. Z. Zha1, V. Grillo and E. Carlino, “Cathodoluminescence spectroscopy of single SnO2 nanowires and nanobelts,” phys. stat. sol. (a), 2005, 202, 2963–2970

    無法下載圖示 全文公開日期 2021/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE