簡易檢索 / 詳目顯示

研究生: 李錟鋒
Tan-feng Lee
論文名稱: 非線性伺服系統之適應控制研究
A study of adaptive control for a class of nonlinear servo systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 薛文証
Wen-Jeng Hsueh
周瑞仁
Jui-Jen Chou
蕭俊祥
Jin-siang Shaw
劉添華
Tian-Hua Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 適應控制非線性伺服系統振動抑制摩擦補償
外文關鍵詞: adaptive control, nonlinear servo systems, vibration suppression, friction compensation
相關次數: 點閱:232下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統中的不確定性與外加干擾不但影響控制性能更會對系統產生不可預料的傷害,本論文基於上述問題分別針對伺服系統中的「摩擦補償」以及「皮帶驅動控制」進行研究。在摩擦補償方面,針對一具有非線性摩擦特性的一維移動平台,提出一FAT適應控制器,並輔以Lyapunov-like法則,以證明系統為穩定收斂,並探討函數近似誤差對系統穩定性之影響。其次設計適當的補償器,有效消除因為摩擦效應所產生的極限圈現象,並且在小位移與大位移皆可達到高速之精密定位,除無超越量之問題,更可達到頗佳之定位精度。在皮帶驅動控制方面,對於具有時變不確定性並承受外加干擾作用的非線性皮帶驅動伺服系統,探討其內部未知量與外部干擾對系統動態特性的影響。本研究提出一以FAT為基礎的滑模控制法則,並以Lyapunov-like法則證明出誤差是均勻最終有界。對具有不確定性與外加干擾的系統,相較於PID控制有更佳的暫態響應,能有效消除振動,並且平滑的將平台運送到目標位置,獲致良好的閉迴路穩定特性。


    There are two parts of this dissertation: one is for the compensation of friction effects in a servo system, the other is the stabilization of a belt-driven servo system. The former designs an adaptive controller to cancel the nonlinear friction so that the limit cycle induced in traditional position regulation can be eliminated. The latter suppresses the flexibility in a belt-driven system such that a precise positioning can be achieved. Both of these approaches assume that the uncertainties and external disturbances are time-varying without knowing their variation bounds. The function approximation technique is employed to compensate for these quantities. The closed loop stability is ensured by using the Lyapunov-like analysis with consideration of the approximation errors in the adaptive loop.

    中文摘要 Abstract 誌謝 目錄 圖表索引 符號說明 第一章 緒論 1.1簡介 1.2 研究動機 1.2.1 摩擦補償 1.2.2 皮帶驅動控制 第二章 摩擦補償 2.1 一維移動平台之動態方程式推導 2.2 f(x,t)未知之適應控制器設計 2.2.1 控制器推導 2.2.2 函數近似誤差對系統穩定性之影響 2.2.3 模擬結果 2.3 f(x,t)與m皆未知之適應控制器設計 2.3.1 控制器設計 2.3.2 近似誤差對系統穩定性之影響 2.3.3 模擬結果 第三章 皮帶驅動伺服系統控制 3.1 皮帶驅動伺服系統的動態模型 3.2 控制器推導 3.3 模擬結果 第四章 結論 參考文獻 作者簡介

    [1]R. D. Lorenz and P. B. Schmidt, “Synchronized motion control for process automation,” IEEE Industry Applications Society Annual Meeting, vol. 2, pp. 1693-1698, 1989.
    [2]G. Brandenburg, S. Geinbenberger, C. Kink, N. H. Schall, and M. Schramm, “Multi-motor electronic line shafts for rotary offset printing presses: a revolution in printing machine techniques,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 1, pp. 25-31, 1999.
    [3]A. Valenzuela and R. Lorenz, “Electronic line-shafting control for paper machine drives,” IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 158-164, 2001.
    [4]F. Perez-Pinal, “Improvement of the electronic virtual shafting,” IEEE Power Electronics Specialist Conference, pp. 3260-3265, 2004.
    [5]Y. R. Huang, Y. Kang, M. H. Chu, and Y. P. Chang, “Modeling belt-servomechanism by Chebyshev functional recurrent neuro-fuzzy network,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 2, no. 5, pp. 949-960, 2008.
    [6]M. Jokinen, S. Saarakkala, M. Niemela, R. Pollanen, and J. Pyrhonen, “Physical drawbacks of linear high-speed tooth belt drives,” Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 872-877, 2008.
    [7]A. Hace, K. Jezernik, and A. Sabanovic, “SMC with disturbance observer for a linear belt-drive,” Proceedings of IEEE International Symposium on Industrial Electronics, pp. 1641-1646, 2005.
    [8]A. Hace, K. Jezernik, and A. Sabanovic, “Improved design of VSS controller for a linear belt-driven servomechanism,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 4, pp. 385-390, 2005.
    [9]Z. Yang and L. Cai, “Tracking control of a belt-driven position table using Fourier series based learning control scheme,” Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, pp. 196-201, 2003.
    [10]J. Wu, G. Xu, and Z. Yin, “Residual vibration reduction for a flexible positioning system using input shaping technique,” Proceedings of the Seventh World Congress on Intelligent Control and Automation, pp. 443-448, 2008.
    [11]M. A. El-Sharkawi and Y. Guo, “Adaptive fuzzy control of a belt-driven precision positioning table,” Proceedings of the IEEE International Conference on Electric Machines and Drives, pp. 1504-1506, 2003.
    [12]X. Gong, Z. Li, W. Qian, “Modeling and simulation of tooth-belt-driven industrial servo system,” Proceedings of the International Conference on Electrical Machines and Systems, pp. 3821-3824, 2008.
    [13]W. Li and M. Rehani, “Modeling and control of a belt-driven positioning table,” Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 1984-1989, 1996.
    [14]Y. Yildiz and A. Sabanovic, “Neuro sliding mode control of timing belt servo system,” Proceedings of the IEEE International Workshop on Advanced Motion Control, pp. 159-163, 2004.
    [15]K. S. Tzeng and J. S. Chen, “Toward the iterative learning control for belt-driven system using wavelet transformation,” Journal of Sound and Vibration, vol. 286, pp.781-798, 2005.
    [16]Y. Zhu, W. Zuo, and L. Cai, “Tracking control of a belt-driving system using improved Fourier series based learning controller,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 881–886, 2005.
    [17]A. Hace, K. Jezernik, and M. Terbuc, “Robust motion control algorithm for belt-driven servomechanism,” Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 893-898, 1999.
    [18]A. Hace, K. Jezernik, and A. Sabanovic, “A new robust position control algorithm for a linear belt-drive,” Proceedings of the IEEE International Conference on Mechatronics, pp.358-363, 2004.
    [19]A. Sabanovic, O. Sozbilir, G. Goktug, and N. Sabanovic, “Sliding mode control of timing-belt servo system,” Proceedings of the IEEE International Symposium on Industrial Electronic, vol. 2, pp. 684-689, 2003.
    [20]V. Lampaert, J. Swevers, and A. B. Farid, “Modification of the Leuven integrated friction model structure,” IEEE Transactions on Automatic Control, vol. 47, no. 4, pp. 683-687, 2002.
    [21]P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state elasto-plastic friction models,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 787-792, 2002.
    [22]B. Armstrong-Helouvry, P. P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp. 1083-1138 ,1994.
    [23]S. J. Huang, J. Y. Yen, and S. S. Lu, “Dual mode control of a system with friction,” IEEE Transactions on Control Systems technology, vol. 7, no. 3, pp. 306-314, 1999.
    [24]B. Armstrong-Helouvry, Control of Machines with Friction, Boston: Kluwer Academic Press, 1991.
    [25]P. Dupont, “Avoiding stick-slip through PD control,” IEEE Transactions on Automatic Control, vol. 39, pp. 1094-1097, 1994.
    [26]J. Bentsman, “Oscillation-induced transitions and their application in control of dynamical systems,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 112, no. 3, pp. 313-319, 1990.
    [27]F. Altpeter, M. Grunenberg, P. Myszkorowski, and R. Longchamp, “Auto-tuning of feedforward friction compensation based on the gradient method,” in Proceedings of American Control Conference, Chicago, IL, pp.2600-2604, 2000.
    [28]N. Leonard and P. Krishnaprasad, “Adaptive friction compensation for bi-directional low-velocity tracking,” in 31st Conference on Decision and Control, Tucson, pp. 267-273, 1992.
    [29]C. Canudas de Wit, H. Olsson, and K. Astrom, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, pp. 419-425, 1995.
    [30]K. S. Hsu, M. G. Her, and M. Y. Cheng, “Analysis and experiments of iterative learning control system with uncertain dynamics,” International Journal Advanced Manufacturing Technology, 25, pp. 1119-1129, 2005.
    [31]S. S. Yeh, Z. H. Tsai, and P. L.Hsu, “Applications of integrated motion controllers for precise CNC machines,” International Journal Advanced Manufacturing Technology, vol. 44, pp. 906-920, 2009.
    [32]M. T. Yan, K. Y. Huang, Y. J. Shiu, and Y. Chen, “Disturbance observer and adaptive controller design for a linear-motor-driven table system,“ International Journal Advanced Manufacturing Technology, vol. 35, pp. 408-415, 2007.
    [33]Z. Q. Mei, Y. C. Xue, and R. Q. Yang, “Nonlinear friction compensation in mechatronic servo systems,“ International Journal Advanced Manufacturing Technology, vol. 30, pp. 693-699, 2006.
    [34]J. S. Chen, Y. H. Kuo, and W. Y. Hsu, “The influence of friction on contouring accuracy of a Cartesian guided tripod machine tool,” International Journal Advanced Manufacturing Technology, vol. 30, pp. 470-478, 2006.
    [35]J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
    [36]A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 2001.
    [37]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Prentice Hall, 1989.
    [38]A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, vol. 40, no. 11, pp. 1939-1945, 2004.
    [39]黃安橋,“ Comparison Lemma”,講義,2007.
    [40]梁鵬旭,“ 次微米級伺服平台之控制研究”,國立台灣科技大學機 械工程技術研究所,碩士學位論文,2002.

    QR CODE