簡易檢索 / 詳目顯示

研究生: 林恒玄
Heng-Syuan Lin
論文名稱: 改善毫米波擷取網路中即時應用服務品質之雙連線傳輸方法
Improving Quality of Service for Real-Time Application through Dual-Connectivity in Millimeter-wave Access Networks
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 鄭瑞光
任芳慶
唐文祥
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 網路編碼毫米波沈浸式內容用戶資料報協定
外文關鍵詞: Network Coding, mmWave, Immersive Cotent, UDP
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毫米波頻段擁有大量的可用頻譜,也已經使用在IEEE 802.11ad的標準中,有望滿足無線擴增實境 (簡寫:AR)/虛擬實境 (簡寫:VR)應用的高吞吐量以及低延遲需求。儘管擁有這些優點,但因為毫米波處在高頻的關係,信號在如此高的頻率下路徑損耗也會劇烈增加,難以提供可靠的傳輸服務。雖然現在毫米波擁有波束成型技術來解決高頻環境下高路徑損耗的問題,但因為毫米波波束高度定向性的特性,使得毫米波信號容易受到各種障礙物(例如人、牆壁等)的影響,而造成無線通道的品質劇烈波盪,信號衰減。雖然基於雙連線下毫米波無線通道傳輸被認為是可以有效增加端到端吞吐量並且有效克服無線通道品質波動的有效方案,但在整體效能上還是不夠良好。

    因此本文建立在單位時間下,僅一位使用者透過下行資料來進行固定位元速率(簡寫:CBR)流量的AR/VR應用,並且毫米波接取點到使用者的通道頻寬會小於AR/VR應用到毫米波接取點的通道頻寬,而網路閘道器到兩台毫米波無線接取點之間的通道頻寬分別要大於CBR流量的資料傳輸速率。我們提出了一個基於網路編碼之雙連線毫米波傳輸方法(mDUNO)。在mDUNO中,透過結合七個機制,分別為雙連線機制、優先權網路編碼機制、緩衝區管理機制、生成冗餘封包機制、調整標頭機制、關閉分散式協調功能重傳機制以及優先權解碼機制,來維持端到端的吞吐量以及延遲。mDUNO讓網路閘道器執行優先權網路編碼機制,並且同時透過網路編碼引入冗餘封包機制。目的是為了自適應性的利用多餘可用頻寬進行封包傳輸。另外,如果頻寬品質不好,則會透過緩衝區管理機制動態的剔除封包。同時,因為在本文環境中,不會存在隱藏節點的條件,因此為了省卻分散式協調的重傳開銷,我們將此重傳機制關閉。最後,mDUNO透過基於優先權的解碼機制來減少延遲。為了評估mDUNO的性能,我們將mDUNO實現在NS-3模擬器上,並且使用WiGig模組來實驗及模擬。實驗結果表明,mDUNO顯著的提高傳輸性能,維持良好的端到端吞吐量以及低延遲的傳輸表現。


    The millimeter-wave (mmWave) frequency band has a vast available spectrum that has been utilized in the IEEE 802.11ad standard. mmWave has the potential to satisfy the demand of numerous wireless AR/VR applications with high-throughput and low-latency. Despite this advantage, the signal suffers from higher path loss. This reason makes mmWave hard to provide reliable transmission service. Although mmWave has beamforming techniques to overcome high path loss. By highly directional characteristics of the mmWave beams, mmWave is vulnerable blocked by various obstacles, such as walls or humans. These obstructions make wireless channel fluctuate dynamically and signals attenuation increase rapidly. Dual-connectivity based mmWave wireless link transmission not only improves end-to-end throughput but also overcomes the effect of channel fluctuant. However, the overall performance of transmission is still underperformed.

    In this thesis, we propose a network coding based mmWave dual-link transmission scheme (mDUNO) for a user to perform a constant bit rate (CBR) AR/VR service. Moreover, the bandwidth from the mmWave access point to the user will be less than the bandwidth between the AR/VR application and the mmWave access point, and the bandwidth from the gateway to two mmWave wireless access points is respectively greater than the data rate of the CBR traffic. In the mDUNO scheme, mDUNO consists of seven strategies, dual connectivity, priority-based network coding strategy, generating redundancy packet strategy, buffer management strategy, adjusting packet header strategy, closing Distributed Coordination Function (DCF) retransmission strategy and priority-based decoding strategy. At first, network gateway will execute the priority-based network coding strategy before forwarding the packets. Furthermore, gateway will generate redundancy packets through network coding
    . These aims to achieve adaptively utilizing spare bandwidth to forward the packets. Additionally, mDUNO actively erasures packets via the buffer management strategy. To save the retransmission overhead of DCF, we also disable the DCF retransmission in mDUNO. In the end, mDUNO reduces the decoding latency via priority-based decoding strategy. To evaluate the performance of the mDUNO scheme, we implement mDUNO on NS-3 and also conduct the experiments using the WiGig module. The results show that mDUNO not only significantly improves the transmission performance but also provides excellent end-to-end throughput and low-latency.

    論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 1緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1系統介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.1通道損失. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2網路壅塞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.3損失模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1.1雙連線機制(Dual Connectivity) . . . . . . . . . . . . . . . . . . 10 4.1.2優先權網路編碼機制(Priority-based Network Coding Strategy) . 11 4.1.3生成冗餘封包機制(Generating Redundancy Packet Strategy) . . . 12 4.1.4緩衝區管理機制(Buffer Management Strategy) . . . . . . . . . . 12 4.1.5調整標頭機制(Adjusting Packet Header Strategy) . . . . . . . . 13 4.1.6關閉分散式協調功能重傳機制(Closing DCF Retransmission Strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.7優先權解碼機制(Priority-based Decoding Strategy) . . . . . . . . 14 4.2 mDUNO方法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 mDUNO在GATEWAY執行流程. . . . . . . . . . . . . . . . . 15 4.2.2 mDUNO在毫米波無線接取點執行流程. . . . . . . . . . . . . . 17 4.2.3 mDUNO在USER執行流程. . . . . . . . . . . . . . . . . . . . 20 5實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 mDUNO實現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 mDUNO在GATEWAY上的實現. . . . . . . . . . . . . . . . . 23 5.1.2 mDUNO在APs上的實現. . . . . . . . . . . . . . . . . . . . . 25 5.1.3 mDUNO在USER上的實現. . . . . . . . . . . . . . . . . . . . 25 6實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1探討不同頻寬品質階段對性能的影響. . . . . . . . . . . . . . . . . . . . 27 6.1.1實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1.2性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2探討頻寬劇烈波動對性能的影響. . . . . . . . . . . . . . . . . . . . . . 33 6.2.1實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2.2性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.3探討mDUNO與其他流量間的公平性. . . . . . . . . . . . . . . . . . . 36 6.3.1實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3.2性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    [1] IDC. Worldwide Spending on Augmented and Virtual Reality Expected to Reach 18.8 Billion in 2020. [Online]. Available: https://www.idc.com/getdoc.jsp? containerId=prUS45679219
    [2] G. Gonçalves, P. Monteiro, M. Melo, J. Vasconcelos-Raposo, and M. Bessa, “A Comparative Study Between Wired and Wireless Virtual Reality Setups,” IEEE Access, vol. 8, pp. 29 249–29 258, Jan. 2020.
    [3] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Enabling High-quality Untethered Virtual Reality,” in 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Mar. 2017, pp. 531–544.
    [4] Y. Liu, J. Liu, A. Argyriou, and S. Ci, “MEC-Assisted Panoramic VR Video Streaming Over Millimeter Wave Mobile Networks,” IEEE Transactions on Multimedia, vol. 21, no. 5, pp. 1302–1316, Oct. 2019.
    [5] C. Perfecto, M. S. Elbamby, J. D. Ser, and M. Bennis, “Taming the Latency in MultiUser VR 360°:A QoE-Aware Deep Learning-Aided Multicast Framework,” IEEE Transactions on Communications, vol. 68, no. 4, pp. 2491–2508, Jan. 2020.
    [6] T. Nitsche et al., “IEEE 802.11ad: directional 60 GHz communication for multiGigabit-per-second Wi-Fi,” IEEE Communications Magazine, vol. 52, no. 12, pp. 132–141, Dec. 2014.
    [7] G. R. MacCartney, S. Deng, S. Sun, and T. S. Rappaport, “Millimeter-Wave Human Blockage at 73 GHz with a Simple Double Knife-Edge Diffraction Model and Extension for Directional Antennas,” in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Jul. 2016, pp. 1–6.
    [8] J. G. Andrews et al., “What Will 5G Be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
    [9] Y. Chen, W. Cheng, and L. Wang, “Learning-assisted beam search for indoor mmWave networks,” in 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), May 2018, pp. 320–325.
    [10] J. Palacios, D. De Donno, and J. Widmer, “Tracking mm-Wave channel dynamics: Fast beam training strategies under mobility,” in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, May 2017, pp. 1–9.
    [11] 3GPP TR36.842, “Study on small cell enhancements for E-UTRA and E-UTRAN : Higher layer aspects,” 3rd Generation Partnership Project, Tech. Rep., Feb. 2014.
    [12] 3GPP TR38.913, “Study on Scenarios and Requirements for Next Generation Access Technologies (Release 14),” Tech. Rep., 2016.
    [13] M. Drago, T. Azzino, M. Polese, Č. Stefanović, and M. Zorzi, “Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding,” in 2018 International Conference on Computing, Networking and Communications (ICNC), Jun. 2018, pp. 508–512.
    [14] M. Sarma, “Performance Measurement of TCP and UDP Using Different Queuing Algorithm in High Speed Local Area Network,” International Journal of Future Computer and Communication, vol. 2, no. 6, pp. 682–686, Dec. 2013.
    [15] I. Aydin and C. Shen, “Performance Evaluation of Concurrent Multipath Transfer Using SCTP Multihoming in Multihop Wireless Networks,” in 2009 Eighth IEEE International Symposium on Network Computing and Applications, Jul. 2009, pp. 234–241.
    [16] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas, “Effectiveness of RTS/CTS handshake in IEEE 802.11a Wireless LANs,” Electronics Letters, vol. 40, no. 14, pp. 915–916, Jul. 2004.
    [17] H. Jasani and N. Alaraje, “Evaluating the performance of IEEE 802.11 network using RTS/CTS mechanism,” in 2007 IEEE International Conference on Electro/Information Technology, May 2007, pp. 616–621.
    [18] S. Lien et al., “Latency-Optimal mmWave Radio Access for V2X Supporting Next Generation Driving Use Cases,” IEEE Access, vol. 7, pp. 6782–6795, Dec. 2019.
    [19] M. N. Akbar, S. Atique, M. Saquib, and M. Ali, “Capacity Enhancement of Indoor 5G mmWave Communication by Beam Steering and Narrowing,” in 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dec. 2018, pp. 85–88.
    [20] C. Perfecto, J. Del Ser, and M. Bennis, “On the interplay between scheduling interval and beamwidth selection for low-latency and reliable V2V mmWave communications,” in 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Apr. 2017, pp. 1–8.
    [21] V. Va, T. Shimizu, G. Bansal, and R. W. Heath, “Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications,” in 2016 IEEE International Conference on Communications (ICC), Jul. 2016, pp. 1–6.
    [22] T. K. Vu, C. Liu, M. Bennis, M. Debbah, and M. Latva-aho, “Path selection and rate allocation in self-backhauled mmWave networks,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2018, pp. 1–6.
    [23] M. Tavares, W. C. Ao, and D. Samardzija, “Optimal Ultra-Reliable Low-Latency Multi-Hop Wireless Networks,” in 2019 IEEE 2nd 5G World Forum (5GWF), Sep. 2019, pp. 477–483.
    [24] I. Achour, T. Bejaoui, A. Busson, and S. Tabbane, “Network Coding scheme behavior in a Vehicle-to-Vehicle safety message dissemination,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Jul. 2017, pp. 441–446.
    [25] R. Torre, S. Pandi, G. T. Nguyen, and F. H. P. Fitzek, “Optimization of a Random Linear Network Coding System with Newton Method for Wireless Systems,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), May 2019, pp. 1–6.
    [26] J. Bao and H. Li, “Multi-Connectivity using Erasure Code for Reliable Transmission in Millimeter Wave Communications,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), May 2019, pp. 1–6.
    [27] P. Chau, J. Shin, and J. P. Jeong, “Distributed Systematic Network Coding for Reliable Content Uploading in Wireless Multimedia Sensor Networks,” Jun. 2018.
    [28] G. Mountaser, T. Mahmoodi, and O. Simeone, “Reliable and Low-Latency Fronthaul for Tactile Internet Applications,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 11, pp. 2455–2463, Sep. 2018.
    [29] A. Cohen, D. Malak, V. B. Brachay, and M. Medard, “Adaptive Causal Network Coding with Feedback,” IEEE Transactions on Communications, pp. 4325–4341, Jul. 2020.
    [30] A. Douik, S. Sorour, T. Y. Al-Naffouri, and M. Alouini, “Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 1201–1224, Feb. 2017.
    [31] J. Cabrera, G. Nguyen, D. E. Lucani, M. Pedersen, and F. H. P. Fitzek, “Taking the Trash Back In: Practical Joint Channel and Network Coding for Improving IEEE 802.11 Networks,” in European Wireless 2017; 23th European Wireless Conference, May 2017, pp. 1–5.
    [32] K. D. Irianto, J. A. Cabrera, G. T. Nguyen, H. Salah, and F. H. P. Fitzek, “SPRAC: Fast Partial Packet Recovery with Network Coding in Very Noisy Wireless Channels,” in 2019 Wireless Days (WD), Apr. 2019, pp. 1–7.
    [33] M. Tomoskozi, D. Lucani, F. H. P. Fitzek, and P. Ekler, “Unidirectional Robust Header Compression for Reliable Low Latency Mesh Networks,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), May 2019, pp. 1– 6.
    [34] D. Gligoroski, K. Kralevska, and H. Øverby, “Minimal header overhead for random linear network coding,” in 2015 IEEE International Conference on Communication Workshop (ICCW), Jun. 2015, pp. 680–685.
    [35] C. Huang and P. Ramanathan, “Network Layer Support for Gigabit TCP Flows in Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 10, pp. 2073–2085, Dec. 2015.
    [36] H. Shokri-Ghadikolaei, C. Fischione, P. Popovski, and M. Zorzi, “Design aspects of short-range millimeter-wave networks: A MAC layer perspective,” IEEE Network, vol. 30, no. 3, pp. 88–96, May 2016.
    [37] M. Gunes, M. Hecker, and I. Bouazizi, “Influence of adaptive RTS/CTS retransmissions on TCP in wireless and ad-hoc networks,” in Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003, vol. 2, Jul. 2003, pp. 855–860.
    [38] M. Yazid, L. Bouallouche-Medjkoune, and D. Aïssani, “Enhancement and simulation of the IEEE 802.11 RTS/CTS scheme under noisy channel,” in 2013 World Congress on Computer and Information Technology (WCCIT), Jun. 2013, pp. 1–5.
    [39] A. Alkhateeb, I. Beltagy, and S. Alex, “Machine leaning for reliable mmWave systems: blockage prediction and proactive handoff,” in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Jul. 2018, pp. 1055–1059.
    [40] Z. Sheng et al., “Intelligent 5G Vehicular Networks: An Integration of DSRC and mmWave Communications,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC), Nov. 2018, pp. 571–576.
    [41] O. Semiari, W. Saad, M. Bennis, and M. Debbah, “Integrated Millimeter Wave and Sub-6 GHz Wireless Networks: A Roadmap for Joint Mobile Broadband and UltraReliable Low-Latency Communications,” IEEE Wireless Communications, vol. 26, no. 2, pp. 109–115, Feb. 2019.
    [42] H. T. Friis, “A Note on a Simple Transmission Formula,” in Proceedings of the IRE, vol. 34, no. 5, May 1946, pp. 254–256.
    [43] H. Assasa and J. Widmer, “Implementation and Evaluation of a WLAN IEEE 802.11ad Model in ns-3,” in Proceedings of the ACM Workshop on ns-3, Jun. 2016, pp. 57–64.
    [44] H. Wu, S. Cheng, Y. Peng, K. Long, and J. Ma, “IEEE 802.11 distributed coordination function (DCF): analysis and enhancement,” in 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333), vol. 1, Apr. 2002, pp. 605–609.
    [45] S. Kim, W. S. Jeong, W. W. Ro, and J.-L. Gaudiot, “Design and Evaluation of Random Linear Network Coding Accelerators on FPGAs,” ACM Transactions on Embedded Computing Systems, vol. 13, no. 1, Sep. 2013.
    [46] H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-Accelerated Many-Core Network Coding,” in IEEE INFOCOM 2009, Apr. 2009, pp. 459–467.
    [47] D. Goncalves, S. Signorello, F. M. V. Ramos, and M. Médard, “Random Linear Network Coding on Programmable Switches,” in 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Sep. 2019, pp. 1–6.

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 2024/08/28 (校外網路)
    全文公開日期 2024/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE