簡易檢索 / 詳目顯示

研究生: 許容賓
Jung-Pin Hsu
論文名稱: 下世代USB高速連接器與毫米波連接器設計
Design of Next Generation USB High Speed Connectors and Millimeter Wave Connectors
指導教授: 楊成發
Chang-Fa Yang
口試委員: 楊成發
馬自莊
陳世傑
龔錦川
魏冠雄
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 124
中文關鍵詞: 高速連接器高頻連接器行動通訊USB連接器可旋轉式RF連接器毫米波次太赫茲
外文關鍵詞: High Speed Connector, High Frequency Connector, Mobile Communications, USB Connector, Rotary RF Connector, Millimeter Wave, Sub-Terahertz
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對高速與高頻訊號連接需求,提出三款可應用於下世代網路與通訊裝置之連接器。第一部分提出一款符合USB4 Gen3規範標準之USB Type-C高速連接器,其中主要透過修改內部屏蔽結構,來改善其訊號完整度問題,以實現高品質訊號傳輸,其雙通道高速資料傳輸速率可望達到40 Gbps,來應用於消費性電子產品。第二部分提出一款搭配超低損耗纜線之可旋轉式射頻線對板連接器,其嵌合高度為1.4 mm,操作頻率可涵蓋DC至60 GHz,並且由於搭配超低損耗纜線,有利於改善毫米波路徑損失問題,提供一種可旋轉式新型毫米波低損耗連接方案,可應用於5G毫米波行動裝置與基地台、雷達系統、衛星模組等。第三部分提出一款微型超寬頻線對板連接器,其嵌合高度僅為0.7 mm,且頻率涵蓋範圍可由DC至150 GHz,可應用於下世代毫米波與次太赫茲裝置之高頻訊號連接。


    This thesis proposes three kinds of the high speed and high frequency connectors to be applied in next generation network and communication devices for signal connection requirements. First, an USB type-C high speed connector is designed, where signal integrities are improved mainly by modifying internal shielding structures. Thus, the specifications of the USB4 Gen3 can be satisfied and a dual-channel data rate of 40 Gbps can be achieved for consumer electronic products. In the second part, a rotary RF wire-to-board connector with an ultra-low loss cable is developed to reduce interconnection loss at mmWave frequencies. A new type of the rotary connector structure with a mating height of 1.4 mm is designed to achieve a bandwidth from DC to 60 GHz. This rotary type RF wire-to-board connector may provide ultra-low loss connection solutions for 5G mobile devices and base stations, radar systems, satellite modules, etc. Finally, a miniaturized and ultra-wideband wire-to-board connector is proposed, which has a mating height of only 0.7 mm and may achieve a bandwidth from DC to 150GHz. This RF wire-to-board connector may provide high frequency signal connection solutions for next generation mmWave and sub-terahertz devices.

    目錄 摘要 I ABSTRACT II 誌謝 II 目錄 IV 圖目錄 VI 表目錄 XI 第壹章 緒論 1 1.1 前言 1 1.2 研究動機與流程 3 1.3 概述 5 第貳章 連接器概述與訊號完整度理論 6 2.1 前言 6 2.2 連接器概述 6 2.2.1 連接器種類與發展 6 2.2.2 連接器基本架構 7 2.3 訊號完整度理論 10 2.3.1 特性阻抗 10 2.3.2 阻抗匹配與時域反射儀 14 2.3.3 傳輸損耗 18 2.3.5 頻寬與脈衝上升時間 20 2.3.6 串音干擾 22 2.3.7 差模訊號與共模訊號 25 2.3.8 測試板佈局建議 29 2.4 小結 31 第參章 USB Type-C 高速連接器 32 3.1 前言 32 3.2 USB Type-C連接器架構與規範 34 3.2.1 機械架構規範 35 3.2.2 電氣特性規範 37 3.3 USB Type-C連接器模擬分析 38 3.3.1 初始USB Type-C連接器模擬與分析 38 3.3.2 改良USB Type-C連接器之隧道式屏蔽結構模擬與分析 47 3.4 小結 60 第肆章 可旋轉式超低損耗連接器 61 4.1前言 61 4.2 NR45連接器架構與規範 64 4.3 NR28連接器模擬與量測分析 66 4.3.1 NR28架構模擬與分析 66 4.3.2 NR28量測與分析 71 4.4 NR45連接器模擬分析 77 4.4.1 NR45改善架構模擬與分析 77 4.5超低損耗NR45連接器傳遞路徑損耗評估與比較 84 4.6 小結 88 第伍章 固定式超寬頻連接器 89 5.1 前言 89 5.2 NR150連接器架構與規範 90 5.3 NR150連接器模擬與分析 92 5.3.1 NR150架構模擬與分析 92 5.4 小結 102 第陸章 結論 103 參考文獻 104

    [1] ITU-R, M.2083 : IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond, September, 2015.
    [2] E. Dahlman et al., “5G wireless access: requirements and realization,” IEEE Communications Magazine, vol. 52, no. 12, pp. 42-47, December 2014.
    [3] W. Hong et al., “The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications,” IEEE Journal of Microwaves, vol. 1, no. 1, pp. 101-122, winter 2021.
    [4] 科技會報辦公室,「我國5G頻譜政策與專網發展」,行政院第3679次會議2019年12月5日。
    [5] ITU-R, P.676-11: Attenuation by atmospheric gases, September, 2016.
    [6] S. Mener, R. Gillard and L. Roy, “A Dual-Band Dual-Circular-Polarization Antenna for Ka-Band Satellite Communications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 274-277, 2017.
    [7] Y. Yu, Z. H. Jiang, H. Zhang, Z. Zhang and W. Hong, “A Low-Profile Beamforming Patch Array With a Cosecant Fourth Power Pattern for Millimeter-Wave Synthetic Aperture Radar Applications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 9, pp. 6486-6496, Sept. 2020.
    [8] Q. Yang et al., “Cavity-Backed Slot-Coupled Patch Antenna Array With Dual Slant Polarization for Millimeter-Wave Base Station Applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1404-1413, March 2021.
    [9] B. Rautio and J. Coonrod, “An Efficient EM Simulation Model for ENIG Plated Metal Finishes Including Conductor Side-Wall Plating Verified with Physical Measurement from 1 to 50 GHz,” IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), 2018.
    [10] J. Doré et al., “Above-90GHz Spectrum and Single-Carrier Waveform as Enablers for Efficient Tbit/s Wireless Communications,” 25th International Conference on Telecommunications (ICT), 2018.
    [11] D.M. Pozar, Microwave Engineering, 4th edition, John Wiley & Sons, Nov. 2011.
    [12] H. W. OTT, Electromagnetic Compatibility Engineering, John Wiley & Sons, 2009.
    [13] S. H. Hall, H. L. Heck, Advanced Signal Integrity for High-Speed Digital Design, John Wiley & Sons, 2009.
    [14] G. Shiue, C. Yeh, H. Y. Liao and P. Huang, “Significant Reduction of Common-Mode Noise in Weakly Coupled Differential Serpentine Delay Microstrip Lines Using Different- Layer-Routing-Turned Traces,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 10, pp. 1671-1683, Oct. 2014.
    [15] H. Johnson, M. Graham, High-Speed Signal Propagation Advanced Black Magic, Prentice Hall PTR, 2003.
    [16] M. Magerl, T. Mandic and A. Baric, “Broadband characterization of SMA connectors by measurements,” 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014.
    [17] H. Huang, D. Liu, T. Guan and X. Liu, “Investigating scattering parameters measurements for 50GHz high speed Printed Circuit Boards (PCBs),” 85th Microwave Measurement Conference (ARFTG), 2015.
    [18] Southwest Microwave Inc., The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates, pp. 8-21, 2011.
    [19] J. Jakob, R. Sammer, F. X. Röhrl, W. Bogner and S. Zorn, “WR12 to planar transmission line transition on organic substrate,” 49th European Microwave Conference (EuMC), 2019.
    [20] Texas Instruments, High-Speed Layout Guidelines (Application Report), 2006.
    [21] A. Ippich, “PCB Surface Finish Impact to Losses at High Frequencies,” IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), 2019.
    [22] Y. Tao and F. Scharf, “Revisiting the Effect of Nickel Characteristics on High-Speed Interconnect Performance,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2447-2453, Aug. 2016.
    [23] USB Implementers Forum (USB-IF),USB Type-C Cable and Connector Specification release 2.0, August 2019.
    [24] 5G NR; User Equipment (UE)radio transmission and reception; Part 2: Range 2 Standalone(3GPP TS 38.101-2 version 15.3.0 Release 15), October 2018.
    [25] C. Yu et al., “Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2847-2860, July 2019.
    [26] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, 3rd edition, John Wiley & Sons, May. 2015.
    [27] Harumoto Inc., http://www.harumoto.com/
    [28] I-PEX Inc., Micro RF Coax Connector product series - I-PEX Connectors, December 2019.
    [29] Hirose Inc., Micro RF Coax Connector U.FL Series Catalog - Hirose Connectors, June 2019.
    [30] Murata Inc., Microwave Coaxial Connectors - Murata Connectors, January 2019.
    [31] I-PEX Inc., Micro RF Coax Connector product – CATALOG MHF 7, 2020.
    [32] 黃宇成,「高頻連接器及毫米波雷達天線與饋入架構設計」,國立臺灣科技大學,中華民國109年7月。
    [33] Keysight Technologies, Physical Layer Test System (PLTS) 2021, 2021.
    [34] ITU-R, F.2394-0 : Compatibility between point-to-point applications in the fixed service operating in the 71-76 GHz and 81-86 GHz bands and automotive radar applications in the radiolocation service operating in the 76-81 GHz bands November, 2016.

    無法下載圖示 全文公開日期 2026/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE