簡易檢索 / 詳目顯示

研究生: 楊政勳
Cheng-Hsun Yang
論文名稱: 毫米波非授權頻段中NR-U與WiGig共存之隱藏節點機率分析
Hidden Node Probability Analysis of NR-U and WiGig Coexistence in mmWave Unlicensed Band
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 鄭瑞光
Ray-Guang Cheng
許獻聰
Shiann-Tsong Sheu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 37
中文關鍵詞: 非授權頻譜隱藏節點
外文關鍵詞: unlicensed spectrum, hidden node
相關次數: 點閱:172下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在通訊技術快速發展的當下,人們對於流量的需求也在急遽的增加。為了應對如此快速增加的流量以及各種不同應用場景的頻譜需求,使用非授權頻譜(unlicensed spectrum)將會是一個可行的解決方法。因此第三代合作夥伴計劃(3rd generation partnership project, 3GPP)提出了新無線電非授權頻譜技術(new radio unlicensed, NR-U),將新無線電技術(new radio, NR)應用於非授權頻譜上。然而,由於使用非授權頻譜的關係,不同無線電接入技術(radio access technology, RAT)之間可能會發生由於隱藏節點(hidden node)所產生的碰撞。雖然NR-U可以透過使用60GHz以上之毫米波(millimeter wave, mmWave)頻段以及使用波束成型(beamforming)技術來減少大部分的隱藏節點問題,但是仍不能完全避免此一情況的發生,且波束成型的高度指向性可能會改變現有的隱藏節點干擾嚴重程度。因此本篇論文將會針對60GHz毫米波頻段中,在NR-U與無線千兆通訊技術(wireless gigabit, WiGig)皆使用波束成型的情況下,針對不同波束寬度(beamwidth)下發生隱藏節點的機率進行數學分析,並使用MATLAB透過蒙地卡羅法進行模擬。從我們的模擬結果與分析中可以觀察到,當波束寬度由大到小變化時,發生隱藏節點的機率也隨之下降。此外由於使用了定向天線(directional antenna),雖然當波束寬度由大到小變化時,可能發生隱藏節點的區域面積佔比隨之上升。但與過往使用全向天線(omnidirectional antenna)相比,由於定向天線與波束成型技術帶來的高度指向性,使得節點就算位於可能發生隱藏節點的區域,只要其波束並未對齊並干擾到其餘節點的話,我們便不會認定該節點為隱藏節點。因此儘管波束寬度由大到小變化時,可能發生隱藏節點的區域面積佔比逐漸上升,但實際上發生隱藏節點的機率是逐漸下降的,而這也證實了透過使用定向天線並適當的調整波束寬度可以降低隱藏節點問題的發生機率。


    In the current era of rapid advancements in communication technology, there is a steep increase in people's demand for wireless data traffic. To cope with the rapid increase in traffic and the spectrum requirements of various application scenarios, utilizing unlicensed spectrum has become a viable solution. The 3rd generation partnership project (3GPP) has therefore introduced new radio unlicensed (NR-U), which allows the use of new radio (NR) in the unlicensed spectrum. However, due to the nature of the unlicensed spectrum, collisions caused by hidden nodes may occur between different radio access technologies (RATs). While NR-U can mitigate most hidden node issues by leveraging millimeter-wave (mmWave) band above 60 GHz and beamforming, it cannot eliminate such occurrences. Moreover, the highly directional nature of beamforming may change the severity of existing hidden node interference. Therefore, this paper focuses on the mathematical analysis of the probability of hidden node under different beamwidth in the 60 GHz mmWave band when both NR-U and wireless gigabit (WiGig) utilize beamforming. The Monte Carlo method is utilized for simulation using MATLAB. From the simulation results and analysis, it can be observed that as the beamwidth decreases from larger to smaller values, the probability of hidden node also decreases. Furthermore, due to the usage of directional antennas, the area percentage of hidden nodes may increase as the beamwidth decreases. However, compared to omnidirectional antennas, the highly directional nature of the antennas and beamforming ensures that nodes in potentially hidden node areas are not considered hidden node unless their beams align and interfere with other nodes. Hence, despite the increase in the proportion of area prone to hidden nodes with decreasing beamwidth, the actual probability of hidden node decreases. This confirms that the usage of directional antennas and appropriate adjustment of beamwidth can effectively reduce the probability of hidden node.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . ii 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . iv 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 數學分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 波束寬度≤120◦之分析. . . . . . . . . . . . . . . . . . . . 9 3.2 120◦ < 波束寬度≤ 180◦之分析. . . . . . . . . . . . . . 11 3.2.1 t>1之情況. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 1 ≥ t ≥ 0之情況. . . . . . . .. . . . . . . . . . . . . . . . . 14 3.3 波束寬度> 180◦之分析. . . . . . . . . . . . . . . . . . . 16 4 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 結論與後續工作. . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 後續工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    [1] S. Cicero, C. Cromwell, and E. Hunt, “Cisco Annual Internet Report (2018-2023) White Paper,” Cisco Systems, San Jose, CA, USA, Tech. Rep. C11-738429-01, Mar. 2020. [Online]. Available:https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
    [2] Qualcomm Technologies, “Driving the New Era of Immersive Experiences,” Qualcomm Technologies, San Diego, CA, USA, Oct. 2015. [Online]. Available: https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/whitepaper-drivingtheneweraofimmersiveexperiences-qualcomm.pdf
    [3] D. Brenner and Y. Wei, “New 3GPP effort on NR in unlicensed spectrum expands 5G to new areas: What can we do with 5G NR spectrum sharing that isn’t possible today,” Qualcomm Technologies, San Diego, CA, USA, White Paper, Dec. 2017. [Online]. Available: https://www.qualcomm.com/content/dam/qcommmartech/dm-assets/documents/nrsswebinardec2017v8.2final.pdf
    [4] 3GPP, “NR; Base Station (BS) radio transmission and reception,” Technical Specification (TS) 38.104, 3rd Generation Partnership Project (3GPP), Jun. 2023. Version 18.2.0.
    [5] 3GPP, “Feasibility Study on Licensed-Assisted Access to Unlicensed Spectrum,” Technical Specification (TS) 36.889, 3rd Generation Partnership Project (3GPP), Jul. 2015. Version 13.0.0.
    [6] L. Li et al., “Coexistence of Wi-Fi and LAA Networks With Adaptive Energy Detection,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10384-10393, Nov. 2017.
    [7] V. Mushunuri et al., “Fair and Efficient Listen Before Talk (LBT) Technique for LTE Licensed Assisted Access (LAA) Networks,” in Proceedings of the 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), Taipei, Taiwan, Mar. 27-29, 2017, pp. 39-45.
    [8] C.Y. Huang et al., “Listen Before Receive (LBR) Assisted Network Access in LAA and WiFi Heterogeneous Networks,” IEEE Access, vol. 9, pp. 43845-43861, Mar. 2021.
    [9] H. J. Kwon et al., “Licensed-Assisted Access to Unlicensed Spectrum in LTE Release 13,” IEEE Communications Magazine, vol. 55, no. 2, pp. 201-207, Feb. 2017.
    [10] V. Sathya, M. I. Rochman, and M. Ghosh, “Hidden-nodes in coexisting LAA & Wi-Fi: a measurement study of real deployments,” in Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, Jun. 14-23, 2021, pp. 1-7.
    [11] K. Suresh and N. Kumaratharan, “Analysis of Hybrid Medium Access Control with WiFi mechanism integration over Unlicensed Spectrum,” in Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, Oct. 01-03, 2021, pp. 1-4.
    [12] J. G. Andrews et al., “Modeling and Analyzing Millimeter Wave Cellular Systems,” IEEE Transactions on Communications, vol. 65, no. 1, pp. 403-430, Jan. 2017.
    [13] T. Bai and R. W. Heath, “Coverage in dense millimeter wave cellular networks,” in Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 03-06, 2013, pp. 2062-2066.
    [14] L. X. Cai et al., “Rex: A randomized EXclusive region based scheduling scheme for mmWave WPANs with directional antenna,” IEEE Transactions on Wireless Communications, vol. 9, no. 1, pp. 113-121, Jan. 2010.
    [15] J. Qiao et al., “Enabling Multi-Hop Concurrent Transmissions in 60 GHz Wireless Personal Area Networks,” IEEE Transactions on Wireless Communications, vol. 10, no. 11, pp. 3824-3833, Nov. 2011.
    [16] S. Lagen et al., “Paired Listen before Talk for Multi-RAT Coexistence in Unlicensed mmWave Bands,” in Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, May 20-24, 2018, pp. 1-6.
    [17] S. Lagen and L. Giupponi, “Listen before receive for coexistence in unlicensed mmWave bands,” in Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, Apr. 15-18, 2018, pp. 1-6.
    [18] S. Lagen, L. Giupponi, and N. Patriciello, “LBT Switching Procedures for New Radio-Based Access to Unlicensed Spectrum,” in Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, Dec. 09-13, 2018, pp. 1-6.
    [19] Q. Chen, X. Xu, and H. Jiang, “Spatial Multiplexing Based NR-U and WiFi Coexistence in Unlicensed Spectrum,” in Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, Sep. 22-25, 2019, pp. 1-5.
    [20] M. Nekovee, Y. Qi, and Y. Wang, “Distributed beam scheduling for multi-RAT coexistence in mm-wave 5G networks,” in Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Sep. 4-8, 2016, pp. 1-6.
    [21] S. Lagen et al., “New Radio Beam-Based Access to Unlicensed Spectrum: Design Challenges and Solutions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 8-37, Oct. 2020.
    [22] F. Liu and Y. Yang, “Spectrum Efficient Coexistence Between 5G NR Unlicensed and WiGig in 60 GHz Band,” in Proceedings of the 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, Nov. 11-14, 2022, pp. 1421-1425.
    [23] A. Daraseliya et al., “Coexistence Analysis of 5G NR Unlicensed and WiGig in Millimeter-Wave Spectrum,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11721-11735, Nov. 2021.
    [24] C. C. Chang, S. S. Wang, and S. T. Sheu, “On Beam-based Channel Reservation for URLLC in Unlicensed Spectrum,” in Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, Nov. 18 / Dec. 16, 2020, pp. 1-5.
    [25] H. Y. Chen, “A study on the coexistence scheme of URLLC and WiFi networks,” Ph.D. dissertation, Dept. Comms. Eng., National Central University, Taoyuan, Taiwan, Aug. 2021.
    [26] Y. C. Tseng, S. Y. Ni, and E. Y. Shih, “Adaptive approaches to relieving broadcast storms in a wireless multihop mobile ad hoc network,” IEEE Transactions on Computers, vol. 52, no. 5, pp. 545-557, May 2003.

    QR CODE