研究生: |
Rio Prasetyo Lukodono Rio Prasetyo Lukodono |
---|---|
論文名稱: |
生理反饋作為人機協作中人類狀態指標之評價 Evaluation of Physiological Feedbacks as an Indicators for Human Status in Human-Robot Collaboration |
指導教授: |
林久翔
Chiuhsiang Joe Lin |
口試委員: |
王孔政
Kung-Jeng Wang 曹譽鐘 Yu-Chung Tsao 江行全 Bernard C. Jiang 李永輝 Yui-Hui Terrence Lee 孫天龍 Tien-Lung Sun |
學位類別: |
博士 Doctor |
系所名稱: |
管理學院 - 工業管理系 Department of Industrial Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 工業4.0 、腦力負荷 、動作意圖 、生理反饋 、人機協作 、深度學習 |
外文關鍵詞: | Industry 4.0, Mental workload, Motion intention, Physiological feedback, Human–robot collaboration, Deep learning |
相關次數: | 點閱:809 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業進化 4.0 正在將重點轉移到通過智能自動化系統為工作場所的人類賦能和參與。 使用機器人是製造商提高靈活性和敏捷性的一種策略。 然而,由於任務的性質和目前的條件,不可能完全用機器人代替人類。 開發的協作場景應該適應人類的能力,同時最大限度地減少他們的工作量和運動無效性,以最大限度地減少人類疲勞。 此外,人與機器人之間的早期快速溝通對於了解人類在協作中的狀態並做出調整以獲得最佳性能至關重要。 這意味著了解人類如何看待協作工作中的變化至關重要。 捕獲人體生理數據以支持設備開發在可穿戴設備系統的靈活性和更大範圍的數據方面顯示出前景。 在這項研究中,開發了兩個場景,以使用生理反饋作為合作評估人類狀態的指標。 第一個場景是評估在人機協作中使用肌肉活動作為運動意圖的有效性。 第二種情況是使用人類心血管和外皮活動來評估人機協作中的腦力負荷。 本研究使用深度學習算法對人體運動意圖和感知心理負荷的生理反饋進行分類,平均準確率高達 90%。 結果表明,肌肉活動、心血管活動和外皮系統活動可有效評估人在意向和腦力負荷方面的狀態。 因此,操作員感知到的運動意圖和腦力負荷可以用來支持操作員4.0的發展。
Industrial evolution 4.0 is shifting the focus to empower and engage human in the workplace with smart automation systems. Utilizing robots is one strategy for manufacturers to improve their flexibility and agility. However, due to the character of the task and present conditions, it is not possible to completely replace human with robots. A collaboration scenario that is developed should accommodate human abilities while minimizing their workloads and motion ineffectiveness. Furthermore, early and quick communication between humans and robots is essential to understand the human's status in collaboration and making adjustments for optimum performance. This implies that it is the importance crucial to of understanding how humans perceive changes in collaborative work. Capturing human physiological data in support of device development has shown promise in terms of flexibility and a greater scope of data in wearable device systems. In this study, two scenarios were developed to use physiological feedback as an indicator to evaluate human status in collaboration. The first scenario is to evaluate the effectiveness of using muscular activities for the motion intention in the Human-robot collaboration. The second scenario is using human cardiovascular and integumentary activities in evaluating the mental workload in Human-robot collaboration. To evaluate the effectiveness of the scenario, this study used a deep learning algorithm to classify the physiological feedback for human motion intention and perceived mental workload accuracy up to 90% on average. The result shows that muscular activities, cardiovascular activities, and integumentary activities are effective at evaluating human status in terms of intention and mental workload. Thus, the motion intention and mental workload perceived by the operator can be used to support the development of operator 4.0.
Al-Yacoub, A., Buerkle, A., Flanagan, M., Ferreira, P., Hubbard, E. M., &Lohse, N. (2020). Effective Human-Robot Collaboration through Wearable Sensors. IEEE Symposium on Emerging Technologies and Factory Automation, ETFA, 2020-Septe, 651–658. https://doi.org/10.1109/ETFA46521.2020.9212100
Balam, V. P., Sameer, V. U., &Chinara, S. (2021). Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram. IET Intelligent Transport Systems, 15(4), 514–524. https://doi.org/10.1049/itr2.12041
Bi, L., Feleke, A., &Guan, C. (2019). A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomedical Signal Processing and Control, 51, 113–127. https://doi.org/10.1016/j.bspc.2019.02.011
Borges, G. D., Reis, A. M., Ariente Neto, R., deMattos, D. L., Cardoso, A., Gonçalves, H., Merino, E., Colim, A., Carneiro, P., &Arezes, P. (2021). Decision‐making framework for implementing safer human–robot collaboration workstations: System dynamics modeling. Safety, 7(4). https://doi.org/10.3390/safety7040075
Buerkle, A., Matharu, H., Al-Yacoub, A., Lohse, N., Bamber, T., &Ferreira, P. (2022). An adaptive human sensor framework for human–robot collaboration. International Journal of Advanced Manufacturing Technology, 119(1–2), 1233–1248. https://doi.org/10.1007/s00170-021-08299-2
Chen, P., Zou, B., Belkacem, A. N., Lyu, X., &Zhao, X. (n.d.). An improved multi-input deep convolutional neural network for automatic emotion recognition.
Cheng, Y., Wang, K., Xu, H., Li, T., Jin, Q., &Cui, D. (2021). Recent developments in sensors for wearable device applications. Analytical and Bioanalytical Chemistry, 413(24), 6037–6057. https://doi.org/10.1007/s00216-021-03602-2
Dehais, F., Causse, M., Vachon, F., &Tremblay, S. (2012). Cognitive conflict in human-automation interactions: A psychophysiological study. Applied Ergonomics, 43(3), 588–595. https://doi.org/10.1016/j.apergo.2011.09.004
Ding, X., Yue, X., Zheng, R., Bi, C., Li, D., &Yao, G. (2019). Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of Affective Disorders, 251(March), 156–161. https://doi.org/10.1016/j.jad.2019.03.058
Fortini, L., Lorenzini, M., Kim, W., DeMomi, E., &Ajoudani, A. (2020). A Real-time Tool for Human Ergonomics Assessment based on Joint Compressive Forces. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 1164–1170. https://doi.org/10.1109/RO-MAN47096.2020.9223565
Gallo, T., &Santolamazza, A. (2021). Industry 4.0 and human factor: How is technology changing the role of the maintenance operator? Procedia Computer Science, 180(2019), 388–393. https://doi.org/10.1016/j.procs.2021.01.364
Georgoulas, C., Linner, T., &Bock, T. (2014). Towards a vision controlled robotic home environment. Automation in Construction, 39, 106–116. https://doi.org/10.1016/j.autcon.2013.06.010
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., &Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013
Gupta, S. S., &Manthalkar, R. R. (2020). Classification of visual cognitive workload using analytic wavelet transform. Biomedical Signal Processing and Control, 61, 101961. https://doi.org/10.1016/j.bspc.2020.101961
Gyongyossy, N M, Domonkos, M., &Botzheim, J. (2020). Interactive Bacterial Evolutionary Algorithm for Work Pace Optimization of Cobots. 20th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2020 - Proceedings, 99–104. https://doi.org/10.1109/CINTI51262.2020.9305835
Gyongyossy, Natabara Mate, Domonkos, M., &Botzheim, J. (2020). Interactive Bacterial Evolutionary Algorithm for Work Pace Optimization of Cobots. 20th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2020 - Proceedings, 99–104. https://doi.org/10.1109/CINTI51262.2020.9305835
Haqque, R. H. D., Djamal, E. C., &Wulandari, A. (2021). Emotion Recognition of EEG Signals Using Wavelet Filter and Convolutional Neural Networks. Proceedings - 2021 8th International Conference on Advanced Informatics: Concepts, Theory, and Application, ICAICTA 2021. https://doi.org/10.1109/ICAICTA53211.2021.9640279
Hara, K., Saito, D., &Shouno, H. (2015). Analysis of function of rectified linear unit used in deep learning. Proceedings of the International Joint Conference on Neural Networks, 2015-Septe, 1–8. https://doi.org/10.1109/IJCNN.2015.7280578
Hashemi-Petroodi, S. E., Thevenin, S., Kovalev, S., &Dolgui, A. (2020). Operations management issues in design and control of hybrid human-robot collaborative manufacturing systems: a survey. Annual Reviews in Control, 49, 264–276. https://doi.org/10.1016/j.arcontrol.2020.04.009
He, Y., Li, F., Li, J., Liu, J., &Wu, X. (2022). An sEMG based adaptive method for human-exoskeleton collaboration in variable walking environments. Biomedical Signal Processing and Control, 74(February), 103477. https://doi.org/10.1016/j.bspc.2021.103477
Heywood, S., Pua, Y. H., McClelland, J., Geigle, P., Rahmann, A., Bower, K., &Clark, R. (2018). Low-cost electromyography – Validation against a commercial system using both manual and automated activation timing thresholds. Journal of Electromyography and Kinesiology, 42(May), 74–80. https://doi.org/10.1016/j.jelekin.2018.05.010
Hopko, S. K., Khurana, R., Mehta, R. K., &Pagilla, P. R. (2021). Effect of Cognitive Fatigue, Operator Sex, and Robot Assistance on Task Performance Metrics, Workload, and Situation Awareness in Human-Robot Collaboration. IEEE Robotics and Automation Letters, 6(2), 3049–3056. https://doi.org/10.1109/LRA.2021.3062787
Hu, B., Lei, C., Wang, D., Zhang, S., &Chen, Z. (2019). A preliminary study on data augmentation of deep learning for image classification. ACM International Conference Proceeding Series, 7–10. https://doi.org/10.1145/3361242.3361259
Jin, K., Rubio-Solis, A., Naik, R., Onyeogulu, T., Islam, A., Khan, S., Teeti, I., Kinross, J., Leff, D. R., Cuzzolin, F., &Mylonas, G. (2022). Identification of Cognitive Workload during Surgical Tasks with Multimodal Deep Learning. http://arxiv.org/abs/2209.06208
Khalid, H M, Shiung, L. W., Nooralishahi, P., Rasool, Z., Helander, M. G., Kiong, L. C., &Ai-Vyrn, C. (2016). Exploring psycho-physiological correlates to trust: Implications for human-robot-human interaction. Proceedings of the Human Factors and Ergonomics Society, 696–700. https://doi.org/10.1177/1541931213601160
Khalid, Halimahtun M., Shiung, L. W., Nooralishahi, P., Rasool, Z., Helander, M. G., Kiong, L. C., &Ai-Vyrn, C. (2016). Exploring psycho-physiological correlates to trust: Implications for human-robot-human interaction. Proceedings of the Human Factors and Ergonomics Society, 696–700. https://doi.org/10.1177/1541931213601160
Khomami, S. A., &Shamekhi, S. (2021). Persian sign language recognition using IMU and surface EMG sensors. Measurement: Journal of the International Measurement Confederation, 168(May 2020). https://doi.org/10.1016/j.measurement.2020.108471
Kim, W., Lee, J., Peternel, L., Tsagarakis, N., &Ajoudani, A. (2018). Anticipatory Robot Assistance for the Prevention of Human Static Joint Overloading in Human-Robot Collaboration. IEEE Robotics and Automation Letters, 3(1), 68–75. https://doi.org/10.1109/LRA.2017.2729666
Kim, W., Peternel, L., Lorenzini, M., Babič, J., &Ajoudani, A. (2021). A Human-Robot Collaboration Framework for Improving Ergonomics During Dexterous Operation of Power Tools. Robotics and Computer-Integrated Manufacturing, 68, 102084. https://doi.org/10.1016/j.rcim.2020.102084
Kiran, D. R. (2020). Micro motion study. Work Organization and Methods Engineering for Productivity, 211–217. https://doi.org/10.1016/b978-0-12-819956-5.00015-7
Kolbeinsson, A., Lagerstedt, E., &Lindblom, J. (2019). Foundation for a classification of collaboration levels for human-robot cooperation in manufacturing. Production and Manufacturing Research, 7(1), 448–471. https://doi.org/10.1080/21693277.2019.1645628
Koppenborg, M., Nickel, P., Naber, B., Lungfiel, A., &Huelke, M. (2017). Effects of movement speed and predictability in human–robot collaboration. Human Factors and Ergonomics In Manufacturing, 27(4), 197–209. https://doi.org/10.1002/hfm.20703
Lagomarsino, M., Lorenzini, M., DeMomi, E., &Ajoudani, A. (2022). An Online Framework for Cognitive Load Assessment in Industrial Tasks. Robotics and Computer-Integrated Manufacturing, 78(July 2021), 102380. https://doi.org/10.1016/j.rcim.2022.102380
Lee, J. A., Chang, Y. S., &Karwowski, W. (2020). Assessment of working postures and physical loading in advanced order picking tasks: A case study of human interaction with automated warehouse goods-to-picker systems. Work, 67(4), 855–866. https://doi.org/10.3233/WOR-203337
Li, K., Zhang, J., Wang, L., Zhang, M., Li, J., &Bao, S. (2020). A review of the key technologies for sEMG-based human-robot interaction systems. Biomedical Signal Processing and Control, 62, 102074. https://doi.org/10.1016/j.bspc.2020.102074
Lin, C. J., &Lukodono, R. P. (2021). Sustainable human–robot collaboration based on human intention classification. Sustainability (Switzerland), 13(11). https://doi.org/10.3390/su13115990
Lin, C. J., &Lukodono, R. P. (2022). Classification of mental workload in Human-robot collaboration using machine learning based on physiological feedback. Journal of Manufacturing Systems, 65(43), 673–685. https://doi.org/10.1016/j.jmsy.2022.10.017
Lorenzini, M., Kim, W., &Ajoudani, A. (2021). An Online Multi-Index Approach to Human Ergonomics Assessment in the Workplace. IEEE Transactions on Human-Machine Systems, XX(X), 1–12. https://doi.org/10.1109/THMS.2021.3133807
Lorenzini, M., Kim, W., &Ajoudani, A. (2022). An Online Multi-Index Approach to Human Ergonomics Assessment in the Workplace. IEEE Transactions on Human-Machine Systems, 1–12. https://doi.org/10.1109/THMS.2021.3133807
Lorenzini, M., Kim, W., Momi, E.De, &Ajoudani, A. (2019). A new overloading fatigue model for ergonomic risk assessment with application to human-robot collaboration. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May, 1962–1968. https://doi.org/10.1109/ICRA.2019.8794044
Luo, H., &Gao, B. (2021). Development of smart wearable sensors for life healthcare. Engineered Regeneration, 2(August), 163–170. https://doi.org/10.1016/j.engreg.2021.10.001
Manjunatha, H., Jujjavarapu, S. S., &Esfahani, E. T. (2020). Classification of Motor Control Difficulty using EMG in Physical Human-Robot Interaction. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2020-Octob, 2708–2713. https://doi.org/10.1109/SMC42975.2020.9283016
Marin, A G, Shourijeh, M. S., Galibarov, P. E., Damsgaard, M., Fritzsch, L., &Stulp, F. (2018). Optimizing Contextual Ergonomics Models in Human-Robot Interaction. IEEE International Conference on Intelligent Robots and Systems, 8603–8608. https://doi.org/10.1109/IROS.2018.8594132
Marin, Antonio Gonzales, Shourijeh, M. S., Galibarov, P. E., Damsgaard, M., Fritzsch, L., &Stulp, F. (2018). Optimizing Contextual Ergonomics Models in Human-Robot Interaction. IEEE International Conference on Intelligent Robots and Systems, 8603–8608. https://doi.org/10.1109/IROS.2018.8594132
Markova, V., Ganchev, T., &Kalinkov, K. (2019). CLAS: A Database for Cognitive Load, Affect and Stress Recognition. Proceedings of the International Conference on Biomedical Innovations and Applications, BIA 2019, 15–18. https://doi.org/10.1109/BIA48344.2019.8967457
Mehta, R. K., Nuamah, J., Peres, S. C., &Murphy, R. R. (2020). Field Methods to Quantify Emergency Responder Fatigue: Lessons Learned from sUAS Deployment at the 2018 Kilauea Volcano Eruption. IISE Transactions on Occupational Ergonomics and Human Factors, 8(3), 166–174. https://doi.org/10.1080/24725838.2020.1855272
Meissner, A., Trübswetter, A., Conti-Kufner, A. S., &Schmidtler, J. (2020). Friend or Foe Understanding Assembly Workers’ Acceptance of Human-robot Collaboration. ACM Transactions on Human-Robot Interaction, 10(1), 1–30. https://doi.org/10.1145/3399433
Mertins, A. (1999). Signal analysis: wavelets, filter banks, time-frequency transforms and applications. In Most.
Messeri, C., Bicchi, A., Zanchettin, A. M., &Rocco, P. (2022). A Dynamic Task Allocation Strategy to Mitigate the Human Physical Fatigue in Collaborative Robotics. IEEE Robotics and Automation Letters, 7(2), 2178–2185. https://doi.org/10.1109/lra.2022.3143520
Messeri, C., Masotti, G., Zanchettin, A. M., &Rocco, P. (2021). Human-robot collaboration: Optimizing stress and productivity based on game theory. IEEE Robotics and Automation Letters, 6(4), 8061–8068. https://doi.org/10.1109/LRA.2021.3102309
Messeri, C., Zanchettin, A. M., Rocco, P., Gianotti, E., Chirico, A., Magoni, S., &Gaggioli, A. (2020). On the effects of leader-follower roles in dyadic human-robot synchronisation. IEEE Transactions on Cognitive and Developmental Systems, 8920(c), 1–10. https://doi.org/10.1109/TCDS.2020.2991864
Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., &Chryssolouris, G. (2015). Design considerations for safe human-robot collaborative workplaces. Procedia CIRP, 37, 248–253. https://doi.org/10.1016/j.procir.2015.08.014
Missiroli, F., Lotti, N., Xiloyannis, M., Sloot, L. H., Riener, R., &Masia, L. (2020). Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit. Frontiers in Robotics and AI, 7. https://doi.org/10.3389/frobt.2020.595844
Moschetti, A., Cavallo, F., Esposito, D., Perders, J., &DiNuovo, A. (2019). Wearable Sensor for Human-Robot Walking Together. Robotics, 49–65. https://doi.org/10.5406/j.ctvpj7gwx.8
Moustafa, K., Luz, S., &Longo, L. (2017). Assessment of mental workload: A comparison of machine learning methods and subjective assessment techniques. Communications in Computer and Information Science, 726, 30–50. https://doi.org/10.1007/978-3-319-61061-0_3
Nelles, J, Kwee-Meier, S. T., &Mertens, A. (2019). Evaluation Metrics Regarding Human Well-Being and System Performance in Human-Robot Interaction – A Literature Review. Advances in Intelligent Systems and Computing, 825, 124–135. https://doi.org/10.1007/978-3-319-96068-5_14
Nelles, Jochen, Kwee-Meier, S. T., &Mertens, A. (2019). Evaluation Metrics Regarding Human Well-Being and System Performance in Human-Robot Interaction – A Literature Review. Advances in Intelligent Systems and Computing, 825, 124–135. https://doi.org/10.1007/978-3-319-96068-5_14
Olhede, S. C., &Walden, A. T. (2002). Generalized Morse wavelets. IEEE Transactions on Signal Processing, 50(11), 2661–2670. https://doi.org/10.1109/TSP.2002.804066
Pang, M, Guo, S., &Zhang, S. (2015). Prediction of interaction force using EMG for characteristic evaluation of touch and push motions. IEEE International Conference on Intelligent Robots and Systems, 2015-Decem, 2099–2104. https://doi.org/10.1109/IROS.2015.7353656
Pang, Muye, Guo, S., &Zhang, S. (2015). Prediction of interaction force using EMG for characteristic evaluation of touch and push motions. IEEE International Conference on Intelligent Robots and Systems, 2015-Decem, 2099–2104. https://doi.org/10.1109/IROS.2015.7353656
Petruck, H., Mertens, A., &Nitsch, V. (2019). Adaptive human-robot collaboration in assembly - Manual processes in the internet of production - Uncertainty in a digitally simulated world? WT Werkstattstechnik, 109(9), 694–698. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078588008&partnerID=40&md5=dbe8c856a27f986993cae90da0660077
Petruck, H., Nelles, J., Faber, M., Giese, H., Geibel, M., Mostert, S., Mertens, A., Brandl, C., &Nitsch, V. (2020). Human-Robot Cooperation in Manual Assembly – Interaction Concepts for the Future Workplace. Advances in Intelligent Systems and Computing, 962, 60–71. https://doi.org/10.1007/978-3-030-20467-9_6
Prattichizzo, D., Pozzi, M., Baldi, T. L., Malvezzi, M., Hussain, I., Rossi, S., &Salvietti, G. (2021). Human augmentation by wearable supernumerary robotic limbs: Review and perspectives. Progress in Biomedical Engineering, 3(4). https://doi.org/10.1088/2516-1091/ac2294
Rajavenkatanarayanan, A., Nambiappan, H. R., Kyrarini, M., &Makedon, F. (2020). Towards a Real-Time Cognitive Load Assessment System for Industrial Human-Robot Cooperation. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 698–705. https://doi.org/10.1109/RO-MAN47096.2020.9223531
Reinerman-Jones, L., Barber, D. J., Szalma, J. L., &Hancock, P. A. (2017). Human interaction with robotic systems: performance and workload evaluations. Ergonomics, 60(10), 1351–1368. https://doi.org/10.1080/00140139.2016.1254282
Romero, D., Bernus, P., Noran, O., Stahre, J., &Berglund, Å. F. (2016). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. IFIP Advances in Information and Communication Technology, 488, 677–686. https://doi.org/10.1007/978-3-319-51133-7_80
Romero, D., Bernus, P., Noran, O., Stahre, J., &Fast-Berglund, A. (2016). The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems. In IFIP WG 5.7 International Conference, APMS (Revised Selected Papers).
Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., &Gorecky, D. (2016). Towards an operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies. CIE 2016: 46th International Conferences on Computers and Industrial Engineering, October, 0–11.
Romine, W. L., Schroeder, N. L., Graft, J., Yang, F., Sadeghi, R., Zabihimayvan, M., Kadariya, D., &Banerjee, T. (2020). Using machine learning to train a wearable device for measuring students’ cognitive load during problem-solving activities based on electrodermal activity, body temperature, and heart rate: Development of a cognitive load tracker for both personal and cla. Sensors (Switzerland), 20(17), 1–14. https://doi.org/10.3390/s20174833
Roy, R. N., Drougard, N., Gateau, T., Dehais, F., Roy, R. N., Drougard, N., Gateau, T., Dehais, F., &Carvalho, C. P. (2021). How Can Physiological Computing Benefit Human-Robot Interaction ? To cite this version : HAL Id : hal-03126528.
Rudigkeit, N., &Gebhard, M. (2020). AMiCUS 2.0—system presentation and demonstration of adaptability to personal needs by the example of an individual with progressed multiple sclerosis. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041194
Sakai, A., Minoda, Y., &Morikawa, K. (2017). Data augmentation methods for machine-learning-based classification of bio-signals. BMEiCON 2017 - 10th Biomedical Engineering International Conference, 2017-Janua, 1–4. https://doi.org/10.1109/BMEiCON.2017.8229109
Sánchez-Reolid, R., López de la Rosa, F., López, M. T., &Fernández-Caballero, A. (2022). One-dimensional convolutional neural networks for low/high arousal classification from electrodermal activity. Biomedical Signal Processing and Control, 71. https://doi.org/10.1016/j.bspc.2021.103203
Savur, C., Kumar, S., &Sahin, F. (2019). A framework for monitoring human physiological response during human robot collaborative task. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 385–390. https://doi.org/10.1109/SMC.2019.8914593
Schmidt, P., Reiss, A., Duerichen, R., &VanLaerhoven, K. (2018). Introducing WeSAD, a multimodal dataset for wearable stress and affect detection. ICMI 2018 - Proceedings of the 2018 International Conference on Multimodal Interaction, 400–408. https://doi.org/10.1145/3242969.3242985
Sezer, A., &Sezer, H. B. (2020). Deep Convolutional Neural Network-Based Automatic Classification of Neonatal Hip Ultrasound Images: A Novel Data Augmentation Approach with Speckle Noise Reduction. Ultrasound in Medicine and Biology, 46(3), 735–749. https://doi.org/10.1016/j.ultrasmedbio.2019.09.018
Shafti, A., Ataka, A., Lazpita, B. U., Shiva, A., Wurdemann, H. A., &Althoefer, K. (2020). Real-time Robot-assisted Ergonomics *. 1975–1981.
Shafti, A., Ataka, A., Lazpita, B. U., Shiva, A., Wurdemann, H. A., &Althoefer, K. (2019). Real-time robot-assisted ergonomics. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May, 1975–1981. https://doi.org/10.1109/ICRA.2019.8793739
Shereen Bellamy. (2021). Can Mental Workload in EEG Tasks Be Classified Using Machine Learning Algorithms?
Song, T., Lu, G., &Yan, J. (2020). Emotion Recognition Based on Physiological Signals Using Convolution Neural Networks. ACM International Conference Proceeding Series, 161–165. https://doi.org/10.1145/3383972.3384003
Sony, S., Dunphy, K., Sadhu, A., &Capretz, M. (2021). A systematic review of convolutional neural network-based structural condition assessment techniques. Engineering Structures, 226(January 2020), 111347. https://doi.org/10.1016/j.engstruct.2020.111347
Surantha, N., Atmaja, P., David, &Wicaksono, M. (2021). A Review of Wearable Internet-of-Things Device for Healthcare. Procedia Computer Science, 179(2020), 939–943. https://doi.org/10.1016/j.procs.2021.01.083
Tavakoli, M., Benussi, C., &Lourenco, J. L. (2017). Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and efficient approach. Expert Systems with Applications, 79, 322–332. https://doi.org/10.1016/j.eswa.2017.03.012
Ugur, T. K., &Erdamar, A. (2019). An efficient automatic arousals detection algorithm in single channel EEG. Computer Methods and Programs in Biomedicine, 173, 131–138. https://doi.org/10.1016/j.cmpb.2019.03.013
Ventura, L., Lorenzini, M., Kim, W., &Ajoudani, A. (2021). A Flexible Robotics-Inspired Computational Model of Compressive Loading on the Human Spine. IEEE Robotics and Automation Letters, 6(4), 8229–8236. https://doi.org/10.1109/LRA.2021.3100936
Villani, V., Pini, F., Leali, F., &Secchi, C. (2018). Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55(June 2017), 248–266. https://doi.org/10.1016/j.mechatronics.2018.02.009
Wan, Y. (2020). Pattern analysis of continuous analytic wavelet transforms of the COVID19 spreading and death. Big Data and Information Analytics, 5(1), 29–46. https://doi.org/10.3934/bdia.2020003
Wang, Y., Cang, S., &Yu, H. (2017). A review of sensor selection, sensor devices and sensor deployment for wearable sensor-based human activity recognition systems. SKIMA 2016 - 2016 10th International Conference on Software, Knowledge, Information Management and Applications, 250–257. https://doi.org/10.1109/SKIMA.2016.7916228
Weistroffer, V, Paljic, A., Fuchs, P., Hugues, O., Chodacki, J., Ligot, P., &Morais, A. (2014). Assessing the acceptability of human-robot co-presence on assembly lines: A comparison between actual situations and their virtual reality counterparts. The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 377–384. https://doi.org/10.1109/ROMAN.2014.6926282
Weistroffer, Vincent, Paljic, A., Callebert, L., &Fuchs, P. (2013a). A methodology to assess the acceptability of human-robot collaboration using virtual reality. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, 39–48. https://doi.org/10.1145/2503713.2503726
Weistroffer, Vincent, Paljic, A., Callebert, L., &Fuchs, P. (2013b). A methodology to assess the acceptability of human-robot collaboration using virtual reality. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, 39–48. https://doi.org/10.1145/2503713.2503726
White, C. M. (1999). Ergonomics: What is it? Clearing away the confusion. Michigan Gamma.
Wu, Y., Zhao, F., Kim, W., &Ajoudani, A. (2020a). An intuitive formulation of the human arm active endpoint stiffness. Sensors (Switzerland), 20(18), 1–15. https://doi.org/10.3390/s20185357
Wu, Y., Zhao, F., Kim, W., &Ajoudani, A. (2020b). An intuitive formulation of the human arm active endpoint stiffness. Sensors (Switzerland), 20(18), 1–15. https://doi.org/10.3390/s20185357
Yang, E., &Dorneich, M. C. (2015). The effect of time delay on emotion, arousal, and satisfaction in human-robot interaction. Proceedings of the Human Factors and Ergonomics Society, 2015-Janua, 443–447. https://doi.org/10.1177/1541931215591094
Zanchettin, A. M., Bascetta, L., &Rocco, P. (2013). Acceptability of robotic manipulators in shared working environments through human-like redundancy resolution. Applied Ergonomics, 44(6), 982–989. https://doi.org/10.1016/j.apergo.2013.03.028
Zhang, Q., Fang, L., Zhang, Q., &Xiong, C. (2021). Simultaneous estimation of joint angle and interaction force towards sEMG-driven human-robot interaction during constrained tasks. Neurocomputing, xxxx. https://doi.org/10.1016/j.neucom.2021.05.113
Zhou, Z. H., &Liu, X. Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18(1), 63–77. https://doi.org/10.1109/TKDE.2006.17
Zolotová, I., Papcun, P., Kajáti, E., Miškuf, M., &Mocnej, J. (2020). Smart and cognitive solutions for Operator 4.0: Laboratory H-CPPS case studies. Computers and Industrial Engineering, 139, 105471. https://doi.org/10.1016/j.cie.2018.10.032