簡易檢索 / 詳目顯示

研究生: 鄭育明
Yu-Ming Jheng
論文名稱: 具智慧故障診斷之旋轉電機混合式運轉狀態監測系統
A Hybrid Condition Monitoring System with Intelligent Fault Diagnosis for Rotating Electrical Machines
指導教授: 張宏展
Hong-Chan Chang
口試委員: 陳建富
陳鴻誠
陳財榮
吳瑞南
郭政謙
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 旋轉電機電氣檢測法振動檢測法運轉狀態監測故障診斷模組
外文關鍵詞: Rotating Electrical Machines, Electrical Detection Methods, Vibrational Detection Methods, Condition Monitoring System, Fault Diagnosis Module
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早期的旋轉電機設備維修保養是採用修復性維修保養,此維修策略容易造成設備維修費用過高、停機所造成的鉅額經濟損失、人員的安全等等問題的浮現,因此,現階段實務上大都採用預防性維修保養的定期性維修保養的方式,此維修策略未充分考慮旋轉電機實際的運轉狀態,導致超量的維修與保養,造成人力及物力的大量浪費,也可能造成臨時的故障情況發生,為此逐漸往基於狀態性維修保養的維修保養方式發展。基於此,本研究主要研製一套具智慧故障診斷之旋轉電機混合式運轉狀態監測系統,混合式運轉狀態監測系統採用電氣與振動檢測法,藉由不同訊號的資訊,提供更為全面的運轉狀態,搭配相應的國際規範做為規則庫,運用模糊理論將電氣與振動運轉狀態進行整合,並提供正常、警戒、危險運轉狀態以及運轉狀態間的餘裕。智慧型故障診斷模組採用振動的時域訊號為來源,透過小波轉換將時域訊號轉為時頻域訊號,藉由不同訊號域的資訊,提供更為有效的故障診斷,再透過深度學習的卷積神經網路架構進行特徵擷取與故障分類。混合式運轉狀態監測系統,透過實際裝設與實驗量測兩套系統的量測數據,進行完整的功能展示,包含正常、警戒、危險的運轉狀態以及運轉狀態間的數值。智慧型故障診斷模組透過混淆矩陣的四項評估指標:分類精度、精度、召回率與F分數的分析評估之下,在五種類型的綜合分類精準度達到99.7 %,在精度、召回率與F分數最低皆為99 %,只有極少數的定子故障、轉子故障、軸承故障與對心故障會造成誤判,但是在健康情形之下的四項評估指標判別率皆為100 %。


    The common practice in motor maintenance had been corrective maintenance, which exposes personnel to safety hazards and incurs excessive costs in equipment maintenance and from downtime. Thus, time-based preventive maintenance has supplanted corrective maintenance in most motor maintenance practices. However, time-based preventive maintenance overlooks the actual operational statuses of rotating electrical machines—causing excessive demands on repairs and maintenance, large costs in human and material resources, and frequent temporary failures. Condition-based maintenance has thus been proposed as an approach that ought to gradually replace its time-based counterpart. This study incorporated a hybrid condition monitoring system with intelligent fault diagnosis for rotating electrical machines. This system adopts the method of testing electrical and vibrational signals, and it also implements the relevant international standards in its rule base. Furthermore, in the system, fuzzy theory is applied to the integration of electrical and vibration operation statuses, and the differences between the current operation signal value and the threshold values of normal, cautionary, and dangerous statuses are calculated. The intelligent fault diagnosis module converts time-domain vibration signals to frequency-domain signals through wavelet transform. Through the use of information from different signal domains, the module provides fault diagnosis with enhanced effectiveness; it also extracts features and classifies faults using a convolutional neural network in deep learning. The hybrid condition monitoring system displays comprehensive functional status information using the data measured through the actual installed system and the experimental measurement system, including the differences between the current operation signal values and the threshold values of normal, cautionary, and dangerous statuses. The intelligent fault diagnosis module analyzes and evaluates the four indices of the confusion matrix, namely classification accuracy, precision, recall rate, and F-score. The module exhibited 99.7% comprehensive classification accuracy on all the five motor types, and it displayed a minimal percentage of 99% in precision, recall rate, and F-score. The module had made an extremely small number of erroneous assessments regrading stator, rotor, bearing, and centering failures, but it exhibited 100% rates in all the four evaluation indices to a health motor.

    中文摘要 I Abstract II 誌  謝 IV 目  錄 V 圖 目 錄 VIII 表 目 錄 XI 第一章 緒  論 1 1.1 研究背景與動機 1 1.2 研究範疇與步驟 2 1.3 文獻探討 5 1.4 本文貢獻 6 1.5 章節概要 7 第二章 資料擷取平台建置與訊號處理技術 9 2.1 硬體架構 9 2.1.1 電氣式硬體架構 11 2.1.2 振動式硬體架構 15 2.2 軟體流程 17 2.3 訊號處理技術 18 2.3.1 快速傅立葉轉換 18 2.3.2 小波轉換 20 2.4 本章結論 21 第三章 混合式運轉狀態監測系統 22 3.1 運轉狀態監測簡介 22 3.2 運轉狀態監測相關規範 23 3.2.1 電氣式相關規範說明 24 3.2.2 振動式相關規範說明 26 3.3 混合式模糊理論運轉狀態監測系統建置 29 3.3.1 模糊理論簡介 30 3.3.2 電氣式運轉狀態監測模糊子系統建置 32 3.3.3 振動式運轉狀態監測模糊子系統建置 33 3.4 本章結論 33 第四章 智慧型故障診斷模組 34 4.1 故障診斷分析簡介 34 4.2 故障診斷分析發展現況 37 4.3 智慧型故障診斷模組建置 38 4.3.1 卷積神經網路簡介 40 4.3.2 深度學習故障診斷模組建置 42 4.4 本章結論 43 第五章 實際案例探討與分析 44 5.1 實驗場域介紹 44 5.2 混合式運轉狀態監測系統案例探討與分析 46 5.2.1 混合式運轉狀態監測系統案例規劃 46 5.2.2 混合式運轉狀態監測系統分析結果 47 5.2.3 混合式運轉狀態監測系統結果討論 48 5.3 智慧型故障診斷模組案例探討與分析 48 5.3.1 智慧型故障診斷模組案例規劃 50 5.3.2 智慧型故障診斷模組分析結果 52 5.3.3 智慧型故障診斷模組結果討論 55 5.4 本章結論 58 第六章 結論與未來展望 59 6.1 結論 59 6.2 未來展望 60 參考文獻 61 作者簡介 73

    [1] Diego Coronado and Katharina Fischer, “Condition Monitoring of Wind Turbines: State of the art, user experience and recommendation,” Fraunhofer Institute for Wind Energy and Energy System Technology IWES, January 2015.
    [2] Hanafy Mahmoud, Ahmed Abou-Elyazied Abdallh, Nicola Bianchi, S. M. El-Hakim, and Luc Dupré, “An Inverse Approach for Interturn Fault Detection in Asynchronous Machines Using Magnetic Pendulous Oscillation Technique,” IEEE Transactions on Industry Applications, Vol. 52, No. 1, pp. 226-233, January/February 2016.
    [3] Teymoor Ghanbari, “Autocorrelation function-based technique for stator turn-fault detection of induction motor,” IET Science, Measurement & Technology, Vol. 10, No. 2, pp. 100-110, August 2016.
    [4] Kleiton Morais Sousa, Uilian José Dreyer, Cicero Martelli, and Jean Carlos Cardozo da Silva, “Dynamic Eccentricity Induced in Induction Motor Detected by Optical Fiber Bragg Grating Strain Sensors,” IEEE Sensors Journal, Vol. 16, No. 12, pp. 4786-4792, June 2016.
    [5] Pinjia Zhang, Yi Du, Thomas G. Habetler, and Bin Lu, “A Survey of Condition Monitoring and Protection Methods for Medium-Voltage Induction Motors,” IEEE Transactions on Industry Applications, Vol. 47, No. 1, pp. 34-46, January/February 2011.
    [6] Shridhar Pharne and Anupama Patil, “Fault Diagnosis of Motor using Fuzzy Logic Technique,” International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017), Chennai, India, June 2018, pp. 3110-3115.
    [7] Xiaodong Liang and Kenneth Edomwandekhoe, “Condition monitoring techniques for induction motors,” 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, November 2017, pp.1-10.
    [8] B Akhil Vinayak, Rahim Uddin, and G Jagadanaand, “Inter phase fault detection in inverter fed induction motor using wavelet transform,” 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, February 2018, pp. 104-107.
    [9] Hanafy Mahmoud, Ahmed Abou-Elyazied Abdallh, Nicola Bianchi, S. M. El-Hakim, and Luc Dupré, “An Inverse Approach for Interturn Fault Detection in Asynchronous Machines Using Magnetic Pendulous Oscillation Technique,” IEEE Transactions on Industry Applications, Vol. 52, No. 1, pp. 226-233, January/February 2016.
    [10] Teymoor Ghanbari, “Autocorrelation function-based technique for stator turn-fault detection of induction motor,” IET Science, Measurement & Technology, Vol. 10, No. 2, pp. 100-110, August 2016.
    [11] M'hamed Drif and Antonio J. Marques Cardoso, “Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses,” IEEE Transactions on Industrial Informatics, Vol. 10, No. 2, pp. 1348-1360, May 2014.
    [12] Fang Duan and Rastko Živanovi´c, “Condition Monitoring of an Induction Motor Stator Windings Via Global Optimization Based on the Hyperbolic Cross Points,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, pp. 1826-1834, March 2015.
    [13] Julio-César Urresty, Jordi-Roger Riba, and Luis Romeral, “Influence of the Stator Windings Configuration in the Currents and Zero-Sequence Voltage Harmonics in Permanent Magnet Synchronous Motors With Demagnetization Faults,” IEEE Transactions on Magnetics, Vol. 49, No. 8, pp. 4885-4893, August 2013.
    [14] Jose de Jesus Rangel-Magdaleno and Hayde Peregrina-Barreto, “FPGA-Based Broken Bars Detection on Induction Motors Under Different Load Using Motor Current Signature Analysis and Mathematical Morphology,” IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 5, pp. 1032-1040, May 2014.
    [15] Yasser Gritli, Sang Bin Lee, Fiorenzo Filippetti, and Luca Zarri, “Advanced Diagnosis of Outer Cage Damage in Double-Squirrel-Cage Induction Motors Under Time-Varying Conditions Based on Wavelet Analysis,” IEEE Transactions on Industry Applications, Vol. 50, No. 3, pp. 1791-1800, May/June 2014.
    [16] Tae-June Kang, Jongwan Kim, Sang Bin Lee, and Chuck Yung, “Experimental Evaluation of Low-Voltage Offline Testing for Induction Motor Rotor Fault Diagnostics,” IEEE Transactions on Industry Applications, Vol. 51, No. 2, pp. 1375-1384, March/April 2015.
    [17] Ahmed Hamida Boudinar, Noureddine Benouzza, Azeddine Bendiabdellah, and Mohammed-El-Amine Khodja, “Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method,” IEEE Transactions on Industry Applications, Vol. 52, No. 5, pp. 3851-3860, September/October 2016.
    [18] Lucia Frosini, Ciprian Harlisca, and Loránd Szabó, “Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, pp. 1846-1854, March 2015.
    [19] Miguel Delgado Prieto and Giansalvo Cirrincione, “Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks,” IEEE Transactions on Industrial Electronics, Vol. 30, No. 8, pp. 3398-3407, August 2013.
    [20] Kleiton Morais Sousa, Uilian José Dreyer, Cicero Martelli, and Jean Carlos Cardozo da Silva, “Dynamic Eccentricity Induced in Induction Motor Detected by Optical Fiber Bragg Grating Strain Sensors,” IEEE Sensors Journal, Vol. 16, No. 12, pp. 4786-4792, June 2016.
    [21] Bashir Mahdi Ebrahimi, Mehrsan Javan Roshtkhari, Jawad Faiz, and Seyed Vahid Khatami, “Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 4, pp. 2041-2052, April 2014.
    [22] Khaled Yahia, Mohamed Sahraoui, Antonio J. Marques Cardoso, and Adel Ghoggal, “The Use of a Modified Prony's Method to Detect the Airgap-Eccentricity Occurrence in Induction Motors,” IEEE Transactions on Industry Applications, Vol. 52, No. 5, pp. 3869-3877, September/October 2016.
    [23] Yaguo Lei, Bin Yang, Xinwei Jiang, Feng Jia, Naipeng Li, and Asoke K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap,” Mechanical Systems and Signal Processing, Vol. 138, pp. 1-39, April 2020.
    [24] Alireza Sadeghian, Zhongming Ye, and Bin Wu, “Online Detection of Broken Rotor Bars in Induction Motors by Wavelet Packet Decomposition and Artificial Neural Networks,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 7, pp. 2253-2263, February 2009.
    [25] Jing Tian, Carlos Morillo, Michael H. Azarian, and Michael Pecht, “Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 3, pp. 1793-1803, December 2015.
    [26] Qi Hang, Jinghui Yang, and Lining Xing, “Diagnosis of Rolling Bearing Based on Classification for High Dimensional Unbalanced Data,” IEEE Access, Vol. 7, pp. 79159-79172, June 2019.
    [27] Shrinathan Esakimuthu Pandarakone, Yukio Mizuno, and Hisahide Nakamura, “Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine,” IEEE Transactions on Industry Applications, Vol. 53, No. 3, pp. 3049-3056, December 2016.
    [28] Emanuele Principi, Damiano Rossetti, Stefano Squartini, and Francesco Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA Journal of Automatica Sinica, Vol. 6, No. 2, pp. 441-451, February 2019.
    [29] Long Wen, Xinyu Li, Liang Gao, and Yuyan Zhang, “A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method,” IEEE Transactions on Industrial Electronics, Vol. 65, No. 7, pp. 5990-5998, November 2017.
    [30] Long Wen, Liang Gao, and Xinyu Li, “A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 49, No. 1, pp. 136-144, October 2017.
    [31] Ruonan Liu, Boyuan Yang, Enrico Zio, and Xuefeng Chen, “Artificial intelligence for fault diagnosis of rotating machinery: A review,” Mechanical Systems and Signal Processing, Vol. 108, pp. 33-47, August 2018.
    [32] 黃玉龍,「應用電氣分析法於馬達線上狀態監視系統之研製」,碩士論文,國立台灣科技大學電機工程系,2012年。
    [33] Hong-Chan Chang, Cheng-Chien Kuo, Yu-Ming Jheng, and Yu-Lung Huang, “An Equivalent Circuit Based On-line Motor Condition Monitoring System by Electrical Signal Analysis,” International Conference on Condition Monitoring and Diagnosis 2014, Jeju Island, Korea, 2014, pp. 266-269.
    [34] 徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,碩士論文,國立台科技大學電機工程系,2013年。
    [35] 黃立彬,「馬達運轉頻譜監測系統之研製」,碩士論文,國立台科技大學電機工程系,2013年。
    [36] 林家民,「感應電動機狀態監測平台之研製」,碩士論文,國立台科技大學電機工程系,2014年。
    [37] 張宏展、鄭強、鄭育明、郭政謙、黃立彬,「馬達運轉頻譜監測系統之研製」,中華民國第三十五屆電力工程研討會,台灣高雄,2014年12月,第1-6頁。
    [38] Hong-Chan Chang, Yu-Ming Jheng, Cheng-Chien Kuo, and Li-Bin Huang, “On-Line Motor Condition Monitoring System for Abnormality Detection,” Computers & Electrical Engineering, Vol. 51, pp. 255-269, April 2016.
    [39] 廖家祺,「電氣指標於感應電動機運轉狀態之適切性評估」,碩士論文,國立台科技大學電機工程系,2015年。
    [40] 謝政甫,「基於模糊法之感應電動機故障診斷與狀態監測系統」,碩士論文,國立台科技大學電機工程系,2015年。
    [41] 沈緯璋,「簡易型感應馬達故障診斷及狀態監測嵌入式系統之研製」,碩士論文,國立台科技大學電機工程系,2015年。
    [42] 林上智,「基於模糊理論之旋轉電機故障診斷與狀態監測系統研究」,博士論文,國立台科技大學電機工程系,2015年。
    [43] 張宏展、郭政謙、鄭育明、林上智、謝政甫、林俊諭,「工業馬達狀態監測與診斷系統開發應用」,科技部工程司專題計畫優良成果專刊,第155期,第34-41頁,2016年12月。
    [44] 張宏展、林彥廷、鄭強、郭政謙、林上智、鄭育明、謝政甫、林芝以,「基於模糊法之感應電動機故障診斷系統」,中華民國第三十七屆電力工程研討會,台灣台中,2016年12月,第1-6頁。
    [45] 張宏展、郭政謙、鄭育明、薛聿明、沈緯璋、洪堃翔,「簡易型感應馬達故障診斷及狀態監測嵌入式系統之研製」,中華民國第三十七屆電力工程研討會,台灣台中,2016年12月,第1-6頁。
    [46] 呂錦河,「基於模糊理論研製具故障診斷功能之感應馬達狀態監測嵌入式系統」,碩士論文,國立台科技大學電機工程系,2016年。
    [47] Hong-Chan Chang, Yu-Ming Jheng, Cheng-Chien Kuo, Yu-Min Hsueh, and Yu-Jhen Cheng, “Development of a Reconfigurable FPGA-Based Partial Discharge Detection Device,” 2017 IEEE International Conference on Applied System Innovation, Sapporo, Japan, 2017, pp. 22-24.
    [48] Yu-Tung Chen, Jui-Chien Lai, Yu-Ming Jheng, Cheng-Chien Kuo, and Hong-Chan Chang, “Partial discharge detection for stator winding insulation of motors using artificial neural network,” Advances in Mechanical Engineering, Vol. 10, No. 7, pp. 1-10, May 2018.
    [49] 林芝以,「運用電氣訊號於感應馬達狀態監測與故障診斷之研究」,碩士論文,國立台科技大學電機工程系,2017年。
    [50] 陳俊毅,「具狀態監測與故障診斷功能之馬達雲系統之研發」,碩士論文,國立台科技大學電機工程系,2017年。
    [51] 曾思憲,「感應馬達主動型狀態估測系統之研發」,碩士論文,國立台科技大學電機工程系,2017年。
    [52] 張宏展、鄭育明、林芝以、曾思憲、林峻皓、羅永傑,「變頻器對高壓馬達狀態監測影響之研究」,第十七屆離島資訊技術與應用研討會,台灣澎湖,2018年5月,第1-8頁。
    [53] 林峻皓,「應用電氣訊號之主成份分析與模糊C均值分群法於高壓馬達主動式運轉狀態監測」,碩士論文,國立台科技大學電機工程系,2018年。
    [54] 羅永傑,「應用振動訊號之主成份分析與K均值分群法於感應電動機主動式運轉狀態監測」,碩士論文,國立台科技大學電機工程系,2018年。
    [55] Hong-Chan Chang, Yu-Ming Jheng, Cheng-Chien Kuo, and Yu-Min Hsueh, “Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach,” Energies, Vol. 12, No. 8, pp. 1-12, April 2019.
    [56] Hong-Chan Chang, Yu-Ming Jheng, Cheng-Chien Kuo, and Jian-Zhong Feng, “Intelligent Fault Diagnosis System for Rotating Machinery using Convolutional Neural Network,” Energies. (In preparation)
    [57] 張宏展、鄭強、林彥廷、陳建富、郭政謙、陳鴻誠、林育勳、鄭育明、林上智、謝政甫、林俊諭,「智慧電網之高壓馬達狀態監測與診斷系統開發應用」,台電工程月刊,第822期,第94-115頁,2017年2月。
    [58] 張宏展、林彥廷、郭政謙、鄭育明、薛聿明、王奕喆,「台中電廠智慧型高壓馬達狀態監測與診斷系統研發、實證與示範應用」,台電工程月刊,2020年4月。
    [59] W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel, W.W. Lang, G.C. Maling, D.E. Nelson, C.M. Rader, and P.D. Welch, “What is the fast Fourier transform?,” Proceedings of the IEEE, Vol. 55, No. 10, pp. 1664-1674, October 1967.
    [60] Ahcène Bouzida, Omar Touhami, Rachid Ibtiouen, Adel Belouchrani, Maurice Fadel, and A. Rezzoug, “Fault Diagnosis in Industrial Induction Machines Through Discrete Wavelet Transform,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, pp. 4385-4395, September 2011.
    [61] Aleš Hromádka and Zbyněk Martínek, “Usability Assessment of Mathematical Models of the Bathtub Curve,” 2019 20th International Scientific Conference on Electric Power Engineering (EPE), Czech Republic, 2019, pp. 1-5.
    [62] IEC 60034-1, “Rotating Electrical Machines - Part 1: Rating and Performance,” 2004.
    [63] IEC 60034-26, “Rotating electrical machines - Part 26: Effects of unbalanced voltages on the performance of three-phase cage induction motors,” 2006.
    [64] NEMA MG 1, “Motors and Generators,” 2016.
    [65] IEEE Std 519, “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” 2014.
    [66] IEC 60034-14, “Rotating electrical machines - Part 14: Mechanical vibration of certain machines with shaft heights 56 mm and higher - Measurement, evaluation and limits of vibration severity,” 2018.
    [67] ISO 10816-3, “Mechanical vibration - evaluation of machine vibration by measurements on non-rotating parts – Part 3: Industrial machines with nominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measured in situ,” 2009.
    [68] VDI 2056, “Standards of Evaluation for Mechanical Vibrations of Machines,” 1964.
    [69] L.A.Zadeh, “Fuzzy sets,” Information and Control, Vol. 8, No. 3, pp. 338-353, June 1965.
    [70] Intel, “How to Get Started as a Developer in AI,” October 2016.
    [71] David Fumo, “Types of Machine Learning Algorithms You Should Know,” Jun, 2017.
    [72] XenonStack, “Automatic Log Analysis using Deep Learning and AI,” October 2018.
    [73] Galina Mirzaeva, and Khalid Imtiaz Saad, “Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement,” IEEE Transactions on Industry Applications, Vol. 54, No. 4, pp. 3961-3970, July/August 2018.
    [74] Zhaowen Hou, Jin Huang, He Liu, Ming Ye, Zijian Liu, and Jiaqiang Yang, “Diagnosis of broken rotor bar fault in open- and closed-loop controlled wye-connected induction motors using zero-sequence voltage,” IET Electric Power Applications, Vol. 11, No. 7, pp. 1214-1223, April 2017.
    [75] B. R. Nayana and P. Geethanjali, “Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal,” IEEE Sensors Journal, Vol. 17, No. 17, pp. 5618-5625, September 2017.
    [76] Carlos Morales-Perez, Jose Rangel-Magdaleno, Hayde Peregrina-Barreto, Juan Pablo Amezquita-Sanchez, and Martin Valtierra-Rodriguez, “Incipient Broken Rotor Bar Detection in Induction Motors Using Vibration Signals and the Orthogonal Matching Pursuit Algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 9, pp. 2058-2068, September 2018.
    [77] KDnuggets News, “An Intuitive Explanation of Convolutional Neural Networks,” November 2016.
    [78] Julien Maitre, Bruno Bouchard, Abdenour Bouzouane, and Sébastien Gaboury, “Classification Algorithms Comparison for Interturn Short-Circuit Recognition in Induction Machines Using Best-Fit 3-D-Ellipse Method,” Canadian Journal of Electrical and Computer Engineering, Vol. 40, No. 4, pp. 255-265, December 2017.
    [79] Kyu-Seok Lee, Sung-Ho Lee, Jung-Hyung Park, Jeong-Man Kim, and Jang-Young Choi, “Experimental and Analytical Study of Single-Phase Squirrel-Cage Induction Motor Considering End-Ring Porosity Rate,” IEEE Transactions on Magnetics, Vol. 53, No. 11, pp. 1-4, November 2017.
    [80] Mansour Ojaghi, Mahdi Sabouri, and Jawad Faiz, “Analytic Model for Induction Motors Under Localized Bearing Faults,” IEEE Transactions on Energy Conversion, Vol. 33, No. 2, pp. 617-626, June 2018.
    [81] Harun Serhat Gerçekcıoğlu and Mehmet Akar, “Instantaneous Power Signature Analysis for Misalignment Fault Diagnosis in 3-Phased Induction Motors,” 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2018, pp. 1-4.
    [82] Hema Shekar Basavegowda and Guesh Dagnew, “Deep learning approach for microarray cancer data classification,” CAAI Transactions on Intelligence Technology, Vol. 5, No. 1, pp. 22-33, March 2020.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE