簡易檢索 / 詳目顯示

研究生: 林上智
Shang-Chih Lin
論文名稱: 基於模糊理論之旋轉電機故障診斷與狀態監測系統研究
Study on Fuzzy Theory-Based Fault Diagnosis and Condition Monitoring Systems for Rotating Electrical Machine
指導教授: 張宏展
Hong-Chan Chang
口試委員: 陳建富
Jiann-Fuh Chen
陳財榮
Tsair-Rong Chen
吳瑞南
Ruay-Nan Wu
陳柏宏
Po-Hung Chen
陳鴻誠
Hung-Cheng Chen
曹登發
Teng-Fa Tsao
郭政謙
Cheng-Chien Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 138
中文關鍵詞: 局部放電檢測法振動檢測法電氣檢測法狀態監測系統故障診斷系統模糊理論旋轉電機
外文關鍵詞: partial discharge detection method, vibration detection method, electrical detection method, condition monitoring system, fault diagnosis system, fuzzy theory, rotating electrical machine
相關次數: 點閱:254下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   拜科技快速發展所賜,人工智慧被大量應用於各產業之際,第四次工業革命已悄然到臨,然素有工業之母美名的旋轉電機在電網與工廠中扮演著舉足輕重的角色,而預知保養策略係當今備受矚目的重要運維議題,遂基於模糊理論建構具故障診斷與狀態監測之旋轉電機專家系統,俾利於提升機組穩定運轉的可靠度。

      本研究針對十組旋轉電機實驗模型進行電氣、振動與局部放電訊號分析,利用資料探勘技術挖掘潛藏於訊號中的異常徵兆,並根據不同成本與安全考量等因素,提出五種故障診斷與三種狀態監測系統解決方案。經實驗模型測試結果,電氣法以52 %的最高機率準確地推論轉子條斷裂故障,振動法以100 %的最高機率準確地推論軸承外環損傷與偏心故障,局部放電法以100 %的最高機率準確地推論定子絕緣故障。然而混合電氣與振動法可有效改善轉子條斷裂推論機率至83 %,再將局部放電法進行整合,可以更準確地辨識定子絕緣異常的類型,且有效地避免誤判的情形發生;而電氣、振動與局部放電之模糊狀態監測系統考慮了氣隙間距與故障因素等監測項目,強化現行以國際標準為主的狀態監測準則,但尚需在未來進行旋轉電機線上長期監測工作,並根據分析數據來調整推理法則與權重值,以期實質提升監測性能的可靠度。

      總結本研究所提出的旋轉電機運維策略經實驗證實具可行性與有效性,期使能在國內產業發展進程中產生正面助益,以避免因旋轉電機異常而引發人員傷亡與經濟損失的嚴重負面影響。


      Thanks to the rapid development of science and technology, artificial intelligence has been widely used in various industries, the fourth industrial revolution has quietly come, the rotating electrical machine is the mother of industry, plays a pivotal role in the power grid and plants, and predict maintenance strategy is now of concern important operation and maintenance issues, therefore, put forward a fuzzy theory-based fault diagnosis and condition monitoring systems for rotating electrical machine, which will help to enhance the reliability of the unit stable operation.

      In this study, a total of ten rotating electrical machine for an experimental model to make electrical, vibration and partial discharge signal analysis, and the use of data mining technology in the mining potential of the signal fault symptoms, according to different considerations of cost and safety factors are proposed five kinds of fault diagnosis and three states monitoring system solutions. The experimental model test results, 52 % of the electrical method with the highest probability of accurately infer broken rotor bar fault, vibration method to 100 % of the highest probability of accurately infer the bearing outer ring damage and eccentric failure, partial discharge method with the highest probability of 100 % accurately infer the stator insulation failure. However, hybrid electric and vibration method can effectively improve the broken rotor bars inference probability to 83 %, and then integrate the partial discharge method, can be more accurately identification of stator insulation type of exception, and effectively avoid the possibility of misjudged, electrical, vibration and partial discharge of condition monitoring systems, taking into account relevant monitoring programs, such as the gap spacing and failure factors, and strengthening existing international standards-based condition monitoring guidelines, but in the future remains to be done to monitor the long-term operation of the rotating electrical machine, according to data analysis adjustment inference rule and the weight values to expect substantive enhance monitoring performance and operation reliability.

      Concluding our proposed rotating electrical machine operation and maintenance strategy confirmed by experiments with the feasibility and effectiveness. We look forward to a positive helpful in the development process of the domestic industry, and further to avoid rotating motor abnormalities lead to serious negative impact on casualties and economic losses.

    中文摘要 I Abstract II 誌  謝 IV 目  錄 V 圖 目 錄 X 表 目 錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究範疇與方法 1 1.3 文獻探討 4 1.4 本文貢獻 7 1.5 章節概要 12 第二章 旋轉電機故障模型建立 14 2.1 故障產生原因 14 2.2 定子部件故障模型 15 2.3 轉子部件故障模型 16 2.4 軸承部件故障模型 16 2.5 偏心故障模型 17 2.6 本章結論 18 第三章 系統架構與訊號量測方法 19 3.1 前言 19 3.2 試驗環境 19 3.3 系統架構 20 3.3.1 感測器與硬體設備 20 3.3.2 系統介面與功能 21 3.4 檢測方法 23 3.4.1 電氣檢測法 23 3.4.2 振動檢測法 28 3.4.3 局部放電檢測法 28 3.5 本章結論 29 第四章 理論基礎與分析方法簡介 30 4.1 前言 30 4.2 模糊推論方法 32 4.2.1 理論基礎與分析流程 32 4.2.2 模糊化 33 4.2.3 規則庫與權重值 34 4.2.4 模糊推論引擎 34 4.2.5 解模糊化 34 4.3 訊號處理與轉換方法 35 4.3.1 快速傅立葉轉換 35 4.3.2 克拉克-康柯迪亞轉換 35 4.3.3 希爾伯特-黃轉換 37 4.3.4 相位解析法 42 4.4 特徵萃取方法 43 4.4.1 頻譜分析 43 4.4.2 適切性分析 48 4.4.3 統計分析 48 4.4.4 軸心軌跡 50 4.4.5 碎形理論 51 4.5 模式識別方法 55 4.5.1 可拓理論 55 4.5.2 人工神經網路 60 4.6 本章結論 66 第五章 故障診斷系統設計與分析 67 5.1 前言 67 5.2 電氣故障診斷系統 68 5.2.1 系統架構與分析流程 68 5.2.2 頻譜分析 68 5.2.3 二維圖譜分析 69 5.2.4 適切性分析 70 5.2.5 模糊系統分析 71 5.2.6 小結 75 5.3 振動故障診斷系統 76 5.3.1 系統架構與分析流程 76 5.3.2 頻譜分析 76 5.3.3 統計分析 78 5.3.4 軸心軌跡分析 78 5.3.5 模糊系統分析 82 5.3.6 小結 85 5.4 局部放電故障診斷系統 85 5.4.1 系統架構與分析流程 85 5.4.2 放電相位解析 86 5.4.3 時頻圖譜分析 87 5.4.4 模糊系統分析 90 5.4.5 小結 93 5.5 混合電氣與振動之模糊故障診斷系統 93 5.5.1 系統架構與分析流程 93 5.5.2 歸屬函數設計 94 5.5.3 權重值設計 94 5.5.4 規則庫設計 95 5.5.5 結果分析 96 5.6 混合電氣、振動與局部放電之模糊故障診斷系統 96 5.6.1 系統架構與分析流程 96 5.6.2 歸屬函數設計 97 5.6.3 權重值設計 97 5.6.4 規則庫設計 97 5.6.5 結果分析 98 5.7 實驗結果比較與討論 101 5.7.1 定子故障診斷性能 101 5.7.2 轉子故障診斷性能 101 5.7.3 軸承故障診斷性能 101 5.7.4 偏心故障診斷性能 102 5.8 本章結論 102 第六章 狀態監測系統設計與分析 103 6.1 前言 103 6.2 電氣狀態監測系統 104 6.2.1 系統架構與分析流程 104 6.2.2 克拉克-康柯迪亞圖譜分析 104 6.2.3 模糊系統分析 107 6.2.4 小結 110 6.3 振動狀態監測系統 110 6.3.1 系統架構與分析流程 110 6.3.2 模糊振動風險評估系統分析 115 6.3.3 模糊振動風險評估系統考慮氣隙間距分析 116 6.3.4 模糊振動風險評估系統考慮故障風險分析 117 6.3.5 模糊振動風險評估系統考慮故障風險與氣隙間距分析 118 6.3.6 小結 119 6.4 局部放電狀態監測系統 122 6.4.1 系統架構與分析流程 122 6.4.2 放電相位解析 123 6.4.3 局部放電量分析 123 6.4.4 模糊系統分析 124 6.4.5 小結 125 6.5 本章結論 126 第七章 結論與未來展望 127 7.1 結論 127 7.2 未來展望 129 參考文獻 131 作者簡介 139

    [1] 古峰昌,「多功能局部放電分析儀之研製及其應用」,博士論文,國立臺灣科技大學,2013年。
    [2] 黃玉龍,「應用電氣分析法於馬達線上狀態監視系統之研製」,碩士論文,國立臺灣科技大學,2013年。
    [3] 徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,碩士論文,國立臺灣科技大學,2014年。
    [4] 廖家祺,「電氣指標於感應電動機運轉狀態之適切性評估」,碩士論文,國立臺灣科技大學,2015年。
    [5] 李源勝,「應用局部放電量測於高壓馬達定子繞組絕緣瑕疵辨識」,碩士論文,國立臺灣科技大學,2015年。
    [6] 謝政甫,「基於模糊法之感應電動機故障診斷與狀態監測系統」,碩士論文,國立臺灣科技大學,2016年。
    [7] 林俊諭,「應用類神經網路於高壓馬達定子線圈絕緣之局部放電圖譜辨識」,碩士論文,國立臺灣科技大學,2016年。
    [8] G. B. Kliman, R. A. Koegl, J. Stein, R. D. Endicott, and M. W. Madden, “Noninvasive detection of broken rotor bars in operating induction motors,” IEEE Transactions on Energy Conversion, Vol. 3, No. 4, pp. 873–879, 1988.
    [9] G. Didier, E. Ternisien, O. Caspary, and H. Razik, “Fault detection of broken rotor bars in induction motor using a global fault index,” IEEE Transactions on Industry Applications, Vol. 42, No. 1, pp. 79–88, 2006.
    [10] 彭善謙,「綜合振動信號於馬達故障診斷」,碩士論文,中原大學機械工程學系,2004年。
    [11] 王俊傑,「旋轉機械故障診斷方法之探討」,博士論文,中原大學,2007年。
    [12] 王俊傑、廖錦棋,「迴轉機械之智慧化檢測技術與實例分析」,經濟部工業局,2013年。
    [13] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Vibration analysis based interturn fault diagnosis in induction machines,” IEEE Transactions on Industrial Informatics, Vol. 10, No. 1, pp. 340–350, 2014.
    [14] E. T. Esfahani, S. Wang, and V. Sundararajan, “Multisensor Wireless System for Eccentricity and Bearing Fault Detection in Induction Motors,” IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 3, pp. 818–826, 2014.
    [15] X. Jin, M. Zhao, T. W. S. Chow, and M. Pecht, “Motor Bearing Fault Diagnosis Using Trace Ratio Linear Discriminant Analysis,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, pp. 2441–2451, 2014.
    [16] L. A. Renforth, P. S. Hamer, D. Clark, S. Goodfellow, and P. S. Haner, “High-Voltage Rotating Machines: A new technique for remote partial discharge monitoring of the stator insulation condition,” IEEE Industry Applications, Vol. 20, No. 6, pp. 79–89, 2014.
    [17] L. A. Renforth, P. S. Hamer, D. Clark, S. Goodfellow, and R. Tower, “Continuous Remote Online Partial Discharge Monitoring of HV Ex/ATEX Motors in the Oil and Gas Industry,” IEEE Transactions on Industry Applications, Vol. 51, No. 2, pp. 1326–1332, 2015.
    [18] T. Yang, H. Pen, Z. Wang, and C. S. Chang, “Feature Knowledge Based Fault Detection of Induction Motors Through the Analysis of Stator Current Data,” IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 3, pp. 549–558, 2016.
    [19] NEMA MG 1, “Motors and generators,” 2011.
    [20] IEEE 141, “IEEE Recommended Practice for Electric Power Distribution for Industrial Plants,” 1993.
    [21] IEC 60034-1, “Rotating Electrical Machines: Part 1 Rating and Performance,” 2004.
    [22] IEEE 1159, “IEEE Recommended Practice for Monitoring Electric Power Quality,” 2009.
    [23] IEEE 519, “IEEE recommended practices and requirements for harmonic control in electrical power systems,” 1992.
    [24] ISO 10816, “Mechanical vibration - evaluation of machine vibration by measurements on non-rotating parts,” 1998.
    [25] 曾炳權,「發電機線圈採用部分放電檢測員肇源之問題探討」,電力人,2010年11月,第27–40頁。
    [26] IEC 60270, “High voltage test techniques – Partial discharge measurement,” 2001.
    [27] IEC TS 60034-27, “Rotating electrical machines – part 27: off-line partial discharge measurements on the stator winding insulation of rotating electrical machines,” 2006.
    [28] IEC TS 60034-27-2, “Rotating electrical machines – part 27-2: on-line partial discharge measurements on the stator winding insulation of rotating electrical machines,” 2012.
    [29] IEC 60505, “Evaluation and qualification of electrical insulation systems,” 2011.
    [30] IEEE 1434, “IEEE Guide to the Measurement of Partial Discharges in Rotating Machinery,” 2000.
    [31] IEEE 1434, “IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery,” 2014.
    [32] H. C. Chang, S. C. Lin, C. C. Kuo, and C. F. Hsieh, “Induction Motor Diagnostic System based on Electrical Detection Method and Fuzzy Algorithm,” International Journal of Fuzzy Systems, 2016. (To be published)
    [33] 張宏展、林上智、郭政謙、謝政甫、廖家祺,「應用電氣指標評估感應電動機之運轉狀態」,2015台灣風能協會學術研討會暨NEP-II離岸風力及海洋能源主軸中心成果發表會,台灣台北,2015年12月,第1–6頁。
    [34] H. C. Chang, S. C. Lin, C. C. Kuo, and C. F. Hsieh, “A Two-Stage Fuzzy-Based Condition Monitoring System for Rotating Machinery Considering International Vibration Standards and Shaft Orbit Features,” IET Electric Power Applications. (Under review)
    [35] H. C. Chang, S. C. Lin, C. C. Kuo, C. Y. Lin, and C. F. Hsieh, “Using Neural Network based on the Shaft Orbit Feature for Online Rotating Machinery Fault Diagnosis,” IEEE International Conference on System Science and Engineering, Nantou, Taiwan, 7-9 July 2016, pp. 1–4.
    [36] 張宏展、林上智、郭政謙、程于真,「基於振動檢測方法於鼠籠式感應電動機運轉狀態風險評估」,中華民國第三十六屆電力工程研討會,台灣桃園,2015年12月,第1–6頁。
    [37] H. C. Chang, S. C. Lin, C. C. Kuo, and C. Y. Lin, “Application of Artificial Neural Network to the Partial Discharge Recognition of High-Voltage Motor,” Proceedings of 2016 National Symposium on System Science and Engineering, Nantou, Taiwan, 8 July 2016, pp. 1–4.
    [38] 張宏展、鄭強、林上智、李源勝、郭政謙,「應用局部放電量測於高壓馬達定子端部繞組絕緣瑕疵辨識」,中華民國第三十六屆電力工程研討會,台灣桃園,2015年12月,第1–6頁。
    [39] 張宏展、林上智、王清安、郭政謙、李源勝,「運用高頻電流脈衝分析技術於電動機定子局部放電瑕疵研究」,第十四屆離島資訊技術與應用研討會,台灣澎湖,2015年5月,第122–129頁。
    [40] H. C. Chang, S. C. Lin, and C. C. Kuo, “Fuzzy Theory-Based Fault Decision System for Rotating Electrical Machinery Considering Electrical and Vibrational Signal Feature,” IEEE International Conference on Fuzzy Theory and Its Applications, Taichung, Taiwan, 9–11 Nov. 2016, pp. 1–6. (Under review)
    [41] S. C. Lin, H. C. Chang, C. C. Kuo, T. C. Hsu, and W. C. Shen, “Assessing Motor Conditions by Using Electrical and Vibrational Detection Methods,” International Conference on Engineering and Natural Science, Tokyo, Japan, 22-24 July 2015, pp. 41–58.
    [42] 張宏展、鄭強、林上智、郭政謙、徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,中華民國第三十五屆電力工程研討會,台灣高雄,2014年12月,第1–6頁。
    [43] H. C. Chang, S. C. Lin, C. C. Kuo, C. F. Hsieh, and C. Y. Lin, “A Two-Stage Rotating Machinery Condition Monitoring and Diagnostic System,” International Conference on Engineering and Natural Science – Summer Session, Kyoto, Japan, 12-14 July 2016, pp. 136–154.
    [44] H. C. Chang, S. C. Lin, C. C. Kuo, C. F. Hsieh, and C. Y. Lin, “A Comprehensive Fuzzy-Based Fault Diagnosis System for Rotating Machinery via Multi-Signal Analysis,” IEEE Transactions on Industry Applications. (In preparation)
    [45] 張宏展、鄭強、林彥廷、陳建富、郭政謙、陳鴻誠、林育勳、鄭育明、林上智、謝政甫、林俊諭,「智慧電網之高壓馬達狀態監測與診斷系統開發應用」,台電工程月刊,2017年。(To be published)
    [46] H. C. Chang, S. C. Lin, C. C. Kuo, and C. Y. Lin, “Fuzzy Theory-Based Partial Discharge Technique for Operating State Diagnosis of High-Voltage Motor Stator Windings,” International Journal of Fuzzy Systems, 2016. (To be published)
    [47] 張宏展、鄭強、林上智、林家民、郭政謙,「感應電動機狀態監測平台之研製」,中華民國第三十六屆電力工程研討會,台灣桃園,2015年12月,第1–6頁。
    [48] Electric Power Research Institute
    http://www.epri.com/Pages/Default.aspx.
    [49] L. A. Zadeh, “Fuzzy sets,” Informational and Control, Vol. 8, No. 3, pp. 338–353, 1965
    [50] W. C. Duesterhoeft, M. W. Schulz, and E. Clarke, “Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components,” Transactions of the American Institute of Electrical Engineers, Vol. 70, No. 2, pp. 1248–1255, 1951.
    [51] A. Shrivastava and S. Wadhwani, “An approach for fault detection and diagnosis of rotating electrical machine using vibration signal analysis,” Recent Advances and Innovations in Engineering, Jaipur, India, 9-11 May 2014, pp. 1–6.
    [52] B. Li and J. C. Hung, “Neural- network-based motor rolling bearing fault diagnosis,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp. 1060–1069, 2000.
    [53] B. Mandelbrot, “Les objets fractals, forme, hasard et dimension,” FLAMMARION, 2010.
    [54] B. B. Mandelbrot, “The fractal geometry of nature,” W. H. Freeman, 2010.
    [55] B. B. Chaudhuri and N. Sarkar, “An efficient approach to compute fractal dimension in texture image,” Proceedings of 11th IAPR International Conference on Pattern Recognition, Hague, Netherlands, Aug. 30- Sept. 3 1992, pp. 358–361.
    [56] L. Satish and W. S. Zaengl, “Can fractal features be used for recognizing 3-d partial discharge patterns,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 3, pp. 352–359, 1995.
    [57] 蔡文,「可拓集合和不相容問題」,科學探索,第3卷,第1期,第2-16頁,2004年。
    [58] 蔡文、楊春燕、林偉初,「可拓工程方法」,第1版,全華科技圖書股份有限公司,台北,2001年。
    [59] D. E. Rumelhart and J. L. McClelland, “Parallel distributed processing: Explorations in the microstructure of cognition,” A Bradford Book, 1986.

    QR CODE