簡易檢索 / 詳目顯示

研究生: 林誼承
Yi-Cheng Lin
論文名稱: 單層二硫化鉬半導體之高速與慢速光電導反應機制研究
Physical Mechanism of High-speed and Low-speed Photoconductive Response in MoS2 Monolayer Semiconductors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 謝雅萍
Ya-Ping Hsieh
黃逸帆
Yi-Fan Huang
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 單層二硫化鉬高頻時間解析光電導高速光電導反應慢速光電導反應硫缺陷
外文關鍵詞: MoS2 Monolayer, High-Frequency Time-Resolved, Photoconductive Response
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討單層(monolayer)結構之二硫化鉬(MoS2)具有高速和慢速光電導響應段之背後的物理機制。首先由穩態光電流量測可觀察到單層MoS2存在兩種不同的光電流反應時間,慢速段的光電流反應時間皆長於1 s,高速段的反應時間則短於1 ms。進一步透過高頻時間解析光電導量測可發現未處理的(pristine)單層MoS2的光反應時間約在200 s,而經過退火處理的樣品其快速反應段似乎可縮短至約20 s。溫度相依光電導量測可發現退火後的單層MoS2遵循單純的電洞陷阱(hole trap)機制。然而未處理的MoS2樣品其載子活期在低溫卻出現異常的不連續變化,其活期大幅縮短。為了解釋這個異常的現象,我們推測在未處理的MoS2除了電洞陷阱以外,可能存在另一種電子陷阱(electron trap),會在低溫時縮短電子載子活期。而退火後的樣品因硫空缺的增加,導致電洞陷阱由缺陷能階分裂成缺陷能帶,造成電洞陷阱的活化能下降。這或許可以解釋單層MoS2在退火後具有比較短的載子活期與較快的光電導反應速率。另外在慢速光反應段方面,發現其光電流具有環境相依的特性,真空下光電流會比大氣來的高,此觀察顯示慢速的光電導反應可能與外在的氧氣或水氣的作用有關,遵循氧敏化光電導機制。


    The physical mechanisms of the high-speed and low-speed photocurrent response in monolayer MoS2 were investigated. We observed that the high-speed response time are shorter than 1 ms and the low-speed ones are longer than 1 s. The time-resolved photoconductivity measurements indicated that the response time of pristine monolayers are approximately 200 s and the response time of annealed monolayers are decreased to approximately 20 s. The temperature-dependent photoconductivity measurements show that the annealed MoS2 monolayers follow the hole trapping mechanism. Meanwhile a discrete lifetime change was also observed for the pristine sample. Coexistence of the electron trap and hole trap states was proposed to explain the shorter carrier lifetime at lower temperature in pristine MoS2 monolayers. The hole trap level split into a hole trap band due to the formation of high-density sulfur vacancies by thermal annealing was proposed to explain the lower activation energy of hole traps and shorter carrier lifetime in the annealed samples. In addition, we also observed that the low-speed photoresponse is sensitive to the environment. The corresponding photocurrent in vacuum is higher than that in air. This result indicates.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 實驗方法 3 2.1 單層二硫化鉬薄膜之成長 3 2.2 單層二硫化鉬薄膜之結構特性檢測 4 2.2.1 拉曼散射光譜儀 (Raman scattering spectroscope) 4 2.2.2 光激發螢光光譜儀 (Photoluminescence spectrometer ) 5 2.3 電極製作 10 2.3.1 直流磁控濺鍍 (DC Magnetron Sputter) 11 2.3.2 元件製作 14 2.4 暗電導特性量測 15 2.4.1 電流對電壓曲線量測 (Current-voltage measurement) 15 2.5 光電導量測 17 2.5.1 功率相依之光電導量測 17 2.5.2 環境變化之光電導量測 18 2.6 高頻時間解析光電導量測 19 2.6.1 溫度變化之高頻時間解析光電導量測 23 第三章 結果與討論 26 3.1 單層 MoS2 薄膜材料結構分析 26 3.1.1 單層 MoS2 薄膜之拉曼散射光譜 26 3.1.2 單層 MoS2 薄膜之光激發螢光光譜 27 3.2 退火後單層 MoS2 薄膜材料結構分析 29 3.2.1 退火時間過程 29 3.2.2 退火後單層 MoS2 薄膜之拉曼散射光譜 29 3.2.3 退火後單層 MoS2 薄膜之光激發螢光光譜 29 3.3 暗電導分析 32 3.3.1 單層二硫化鉬( Pristine )樣品之電導率量測 32 3.3.2 退火後單層二硫化鉬( Annealed )樣品之電導率量測 32 3.3.3 溫度相依之暗電導分析 34 3.4 光電導分析 39 3.5 慢速響應段之光電導分析 41 3.5.1 慢速響應段之環境相依光電導分析 41 3.5.2 慢速響應段之功率相依光電導分析 45 3.5.3 慢速響應段之光響應分析 47 3.6 快速響應段之光電導分析 49 3.6.1 快速響應段之功率相依、環境相依光電導分析 49 3.6.2 快速響應段之光響應分析 51 3.6.3 快速響應段之溫度相依光電導分析 54 第四章 結論 62 參考資料 63

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 5696, 666 (2004).
    [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals”, Proceedings of the National Academy of Sciences of the United States of America, 102, 30, 10451 (2005).
    [3] K. Geim and K. S. Novoselov, “The Rise of Graphene”, Nat. Mater., 6, 3, 183 (2007).
    [4] Yazyev O. V., Kis A., “MoS2 and semiconductors in the flatland”, Mater. Today, 18, 20 (2015).
    [5] Butler S. Z. et al., “Challenges, and opportunities in two-dimensional materials beyond graphene”, ACS Nano., 7, 2898 (2013).
    [6] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat Nanotechnol., 7, 699 (2012).
    [7] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. “Atomically thin MoS2: A new direct-gap semiconductor”, Phys. Rev. Lett., 105, 136805 (2010).
    [8] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., “Emerging Photoluminescence in Monolayer MoS2”, Nano Lett., 10, 1271, (2010).
    [9] Geim, A. K., Grigorieva, I. V., “Van der Waals heterostructures”, Nature, 499, 419 (2013).
    [10] Withers, F. et al. “Light-emitting diodes by band-structure engineering in van der Waals heterostructures”, Nat Mater., 14, 301 (2015).
    [11] B. Radisavljevic, A. Radenovic, J. Brivio, V.Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotech., 6, 3, 147 (2011).
    [12] Lopez-Sanchez, O. Lembke, D. Kayci, M. Radenovic, and A. Kis, “Ultrasensitive Photodetectors Based on Monolayer MoS2,” Nat. Nanotechnol., 8, 497 (2013).
    [13] C. J. Liu, S. Y. Tai, Y. C. Yu, K. D. Chang, S. Wang, F. S. S. Chien, J. Y. Lin, and T. W. Lin, “Facile Synthesis of MoS2/Graphene Nanocomposite with High Catalytic Activity Toward Triiodide Reduction in Dye-Sensitized Solar Cells,” J. Mater. Chem., 22, 39, 21057, (2012).
    [14] K. Roy et al. “Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices”, Nature Nanotech., 8, 826 (2013).
    [15] Min Sup Choi1, Gwan Hyoung Lee, Young Jun Yu, Dae Yeong Lee, Seung Hwan Lee, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices”, Nat. Commun., 4, 1624 (2013).
    [16] Tsai D. S., Liu K. K., Lien D. H., et al. “Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments”. ACS Nano, 7, 3905 (2013).
    [17] Furchi M. M., Polyushkin D. K., Pospischil A., Mueller T., “Mechanisms of Photoconductivity in Atomically Thin MoS2”, Nano Lett., 14, 6165 (2014).
    [18] "H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im, “MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap”, Nano Lett., 12, 3695 (2012).
    [19] Furchi M. M., Polyushkin D. K., Pospischil A., Mueller T., “Mechanisms of Photoconductivity in Atomically Thin MoS2”, Nano Lett., 14, 11, 6165, (2014).
    [20] Su G., Hadjiev V. G., Loya P. E., et. al. “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application”, Nano Lett., 15, 506 (2015).
    [21] Yang R., Feng S., Xiang J., et. al. “Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulphide grown by chemical vapor deposition”, ACS Appl Mater Interfaces, 9, 42001 (2017).
    [22] Tobias J. Octon, V. Karthik Nagareddy, Saverio Russo, Monica F. Craciun, C. David Wright, “Fast High-Responsivity Few-Layer MoTe2 Photodetectors”, Adv. Optical Mater., 10, 1002 (2016).
    [23] Hafeez M., Gan L. Li, H. Q., Ma Y., Zhai T. Y., “Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors”, Adv. Funct. Mater., 26, 4551 (2016).
    [24] Perea López N., Elías A. L., Berkdemir A., Castro Beltran A., Gutiérrez H. R., Feng S. M., Lv R. T., Hayashi T., López Urías F., Ghosh S., Muchharla B., Talapatra S., Terrones H., Terrones M., “Photosensor Device Based on Few-Layered WS2 Films”, Adv. Funct. Mater., 23, 5511 (2013).
    [25] Siao, M. D., Shen, W. C., Chen, R. S., Chang, Z. W., Shih, M. C., Chiu, Y. P., & Cheng, C. M. “Two-dimensional electronic transport and surface electron accumulation in MoS2. ” Nat. Commun. 9, 1442 (2018).
    [26] 沈韋竹,“二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性”國立臺灣科技大學光電工程研究所碩士學位論文 (2015).
    [27] 何沁蓉,“二硫化鉬及二硒化鉬層狀半導體奈米結構之高頻時間解析光電導特性”國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [28] 郭佳紋,“單層二硫化鉬半導體之高頻時間解析光電導特性研究”國立臺灣科技大學應用科技研究所碩士學位論文 (2021)
    [29] 王驊民,“二硫化鉬層狀半導體歐姆接觸探討”國立臺灣科技大學光電工程研究所碩士學位論文 (2018).
    [30] Li, H. and X. H. Zhang (2020). "Temperature-dependent photoluminescence and time-resolved photoluminescence study of monolayer molybdenum disulfide." Optical Materials 107.
    [31] Deb, S., et al. (2020). "Effect of Oxygen Adsorption on Electrical and Thermoelectrical Properties of Monolayer MoS2." Physical Review Applied 14(3).
    [32] Zhou, W., et al. (2013). "Intrinsic structural defects in monolayer molybdenum disulfide." Nano Lett 13(6): 2615-2622.
    [33] Xia, Y., et al. (2019). "Sulfur-Vacancy-Enriched MoS2 Nanosheets Based Heterostructures for Near-Infrared Optoelectronic NO2 Sensing." ACS Applied Nano Materials 3(1): 665-673.
    [34] Feng, L.-p., et al. (2014). "Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: A first-principles study." Journal of Alloys and Compounds 613: 122-127.
    [35] Donald A. Neamen, “Semiconductor Physics & Devices Basic Principles 4/E(IE) ”
    [36] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, “From Bulk to Monolayer MoS2 Evolution of Raman scattering”, Adv. Funct. Mater., 22, 1385 (2012).

    [37] Lee C., Yan H., Brus L. E., Heinz T. F., Hone J., Ryu S., “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2”, ACS Nano, 4, 2695 (2010).
    [38] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition,” Nanoscale Res. Lett., 8, 443 (2013).
    [39] Soci C., Zhang A., Xiang B., Dayeh S. A., Aplin D. P. R., Park J., Bao X. Y., Lo Y. H., Wang D., “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., 7, 4, 1003 (2007).
    [40] Binet F., Duboz, J. Y., Rosencher E., Scholz F., Härle V., “Mechanisms of recombination in GaN photodetectors”, Appl. Phys. Lett., 69, 1202 (1996).
    [41] J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, “Relaxation of persistent photoconductivity in Al0.3 Ga0.7 As. ” Phys. Rev. 42, 5855 (1990).
    [42] J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Votchkarev, and H. Morkoc. “Nature of Mg impurities in GaN. ” Appl. Phys. Lett. 69, 1474 ~1996.

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 2027/09/27 (校外網路)
    全文公開日期 2027/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE