簡易檢索 / 詳目顯示

研究生: 郭佳紋
Chia-Wen Kuo
論文名稱: 單層二硫化鉬半導體之高頻時間解析光電導特性研究
High-Frequency Time-Resolved Photoconduction in MoS2 Monolayer Semiconductor
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳瑞山
Ruei-San Chen
李奎毅
Kuei-Yi Lee
邱博文
Po-Wen Chiu
謝雅萍
Ya-Ping Hsieh
黃逸帆
Yi-Fan Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 單層二硫化鉬高頻時間解析光電導
外文關鍵詞: MoS2 Monolayer, High-Frequency Time-Resolved, Photoconduction
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要.....I Abstract.....II 致謝.....III 目錄.....IV 圖目錄.....VII 表目錄.....XI 第一章 緒論.....1 第二章 實驗方法.....3 2.1 單層二硫化鉬薄膜之成長.....3 2.2 單層二硫化鉬薄膜之結構特性檢測.....4 2.2.1 拉曼散射光譜儀 (Raman scattering spectroscope).....4 2.2.2 光激發螢光光譜儀 (Photoluminescence spectrometer ).....5 2.3 單層二硫化鉬薄膜之電極製作.....10 2.3.1 直流磁控濺鍍 (DC Magnetron Sputter).....10 2.3.2 元件製作.....13 2.4 單層二硫化鉬薄膜元件之暗電導特性量測.....14 2.4.1 電流對電壓曲線量測 (Current-voltage measurement).....14 2.5 單層二硫化鉬薄膜元件之光電導量測.....16 2.5.1 功率相依之光電導量測 (Power-dependent photocurrent measurement).....16 2.5.2 環境變化之光電導量測 (Ambience-dependent photocurrent measurement).....17 2.6 單層二硫化鉬薄膜元件之高頻時間解析光電導特性量測.....18 2.6.1 功率相依之高頻時間解析光電導量測 (Power-dependent high-frequency time-resolved photoconductivity measurement).....18 2.6.2 溫度變化與環境變化之高頻時間解析光電導量測(Temperature-dependent and Ambience-dependent high-frequency time-resolved photoconductivity measurement).....22 第三章 結果與討論.....25 3.1 單層二硫化鉬薄膜之結構分析.....25 3.2 單層二硫化鉬薄膜之暗電導分析.....28 3.2.1 電壓對電流量測.....28 3.3 單層二硫化鉬薄膜之光電導研究.....30 3.3.1 功率相依之光電導分析.....30 3.3.2 波長相依之光電導分析.....33 3.3.3 光電導效率計算.....35 3.3.4 環境變化之光電導分析.....37 3.4 單層二硫化鉬薄膜之高頻時間解析光電導研究.....42 3.4.1 功率相依之載子活期分析.....42 3.4.2 波長相依之載子活期分析.....45 3.4.3 溫度相依之載子活期分析.....49 3.4.4 環境變化之載子活期分析.....58 第四章 結論.....66 參考資料.....67

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 5696, 666 (2004).
    [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals”, Proceedings of the National Academy of Sciences of the United States of America, 102, 30, 10451 (2005).
    [3] A. K. Geim and K. S. Novoselov, “The Rise of Graphene”, Nat. Mater., 6, 3, 183 (2007).
    [4] Yazyev O. V., Kis A., “MoS2 and semiconductors in the flatland”, Mater. Today, 18, 20 (2015).
    [5] Butler S. Z. et al., “Challenges, and opportunities in two-dimensional materials beyond graphene”, ACS Nano., 7, 2898 (2013).
    [6] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat Nanotechnol., 7, 699 (2012).
    [7] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. “Atomically thin MoS2: A new direct-gap semiconductor”, Phys. Rev. Lett., 105, 136805 (2010).
    [8] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., “Emerging Photoluminescence in Monolayer MoS2”, Nano Lett., 10, 1271, (2010).
    [9] Geim, A. K., Grigorieva, I. V., “Van der Waals heterostructures”, Nature, 499, 419 (2013).
    [10] Withers, F. et al. “Light-emitting diodes by band-structure engineering in van der Waals heterostructures”, Nat Mater., 14, 301 (2015).
    [11] B. Radisavljevic, A. Radenovic, J. Brivio, V.Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotech., 6, 3, 147 (2011).
    [12] Lopez-Sanchez, O. Lembke, D. Kayci, M. Radenovic, and A. Kis, “Ultrasensitive Photodetectors Based on Monolayer MoS2,” Nat. Nanotechnol., 8, 497 (2013).
    [13] C. J. Liu, S. Y. Tai, Y. C. Yu, K. D. Chang, S. Wang, F. S. S. Chien, J. Y. Lin, and T. W. Lin, “Facile Synthesis of MoS2/Graphene Nanocomposite with High Catalytic Activity Toward Triiodide Reduction in Dye-Sensitized Solar Cells,” J. Mater. Chem., 22, 39, 21057, (2012).
    [14] K. Roy et al. “Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices”, Nature Nanotech., 8, 826 (2013).
    [15] Min Sup Choi1, Gwan Hyoung Lee, Young Jun Yu, Dae Yeong Lee, Seung Hwan Lee, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices”, Nat. Commun., 4, 1624 (2013).
    [16] 王驊民,“二硫化鉬層狀半導體歐姆接觸探討”國立臺灣科技大學光電工程研究所碩士學位論文 (2018).
    [17] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., 91970, 211102 (2010).
    [18] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, “From Bulk to Monolayer MoS2 Evolution of Raman scattering”, Adv. Funct. Mater., 22, 1385 (2012).
    [19] Lee C., Yan H., Brus L. E., Heinz T. F., Hone J., Ryu S., “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2”, ACS Nano, 4, 2695 (2010).
    [20] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2:A new direct-gap semiconductor”, Phys. Rev. Lett., 105, 136805 (2010).
    [21] P. Bhattacharya, “Semiconductor optoelectronic devices,” Prentice Hall, 8, 346 (1997).
    [22] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,”J.Appl. Phys., 79, 7433 (1996).
    [23] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition,” Nanoscale Res. Lett., 8, 443 (2013).
    [24] Binet F., Duboz, J. Y., Rosencher E., Scholz F., Härle V., “Mechanisms of recombination in GaN photodetectors”, Appl. Phys. Lett., 69, 1202 (1996).
    [25] 沈韋竹,“二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性”國立臺灣科技大學光電工程研究所碩士學位論文 (2015).
    [26] 何沁蓉,“二硫化鉬及二硒化鉬層狀半導體奈米結構之高頻時間解析光電導特性”國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [27] Soci C., Zhang A., Xiang B., Dayeh S. A., Aplin D. P. R., Park J., Bao X. Y., Lo Y. H., Wang D., “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., 7, 4, 1003 (2007).
    [28] Hirsch M. T., Wolk J. A., Walukiewicz W., Haller E. E., “Persistent Photoconductivity in n-Type GaN. ” Appl. Phys. Lett., 71, 1098 (1997).
    [29] Tsai D. S., Liu K. K., Lien D. H., et al. “Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments”. ACS Nano, 7, 3905 (2013).
    [30] Furchi M. M., Polyushkin D. K., Pospischil A., Mueller T., “Mechanisms of Photoconductivity in Atomically Thin MoS2”, Nano Lett., 14, 6165 (2014).
    [31] "H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im, “MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap”, Nano Lett., 12, 3695 (2012).
    [32] Furchi M. M., Polyushkin D. K., Pospischil A., Mueller T., “Mechanisms of Photoconductivity in Atomically Thin MoS2”, Nano Lett., 14, 11, 6165, (2014).
    [33] Su G., Hadjiev V. G., Loya P. E., et. al. “Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application”, Nano Lett., 15, 506 (2015).
    [34] Yang R., Feng S., Xiang J., et. al. “Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulphide grown by chemical vapor deposition”, ACS Appl Mater Interfaces, 9, 42001 (2017).
    [35] Tobias J. Octon, V. Karthik Nagareddy, Saverio Russo, Monica F. Craciun, C. David Wright, “Fast High-Responsivity Few-Layer MoTe2 Photodetectors”, Adv. Optical Mater., 10, 1002 (2016).
    [36] Hafeez M., Gan L. Li, H. Q., Ma Y., Zhai T. Y., “Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors”, Adv. Funct. Mater., 26, 4551 (2016).
    [37] Perea López N., Elías A. L., Berkdemir A., Castro Beltran A., Gutiérrez H. R., Feng S. M., Lv R. T., Hayashi T., López Urías F., Ghosh S., Muchharla B., Talapatra S., Terrones H., Terrones M., “Photosensor Device Based on Few-Layered WS2 Films”, Adv. Funct. Mater., 23, 5511 (2013).
    [38] A. Abderrahmane1, P. J. Ko, T. V. Thu, S. Ishizawa1, T. Takamura, A. Sandhu1, “High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors”, Nanotechnology, 25, 365202 (2014).
    [39] Hu P., Wen Z., Wang L., Tan P., Xiao K., “Synthesis of few-layer GaSe nanosheets for high performance photodetectors”, ACS Nano, 6, 5988 (2012).
    [40] Liu F., Shimotani H., Shang H., Kanagasekaran, T., Zólyomi V., Drummond N., Fal Ko V. I., Tanigaki K., “High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes”, ACS Nano, 8, 752 (2014).
    [41] Hu P., Wang L., Yoon M., et. al. “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates”, Nano Lett., 13, 1649 (2013).
    [42] Tian Jun Dai, Yu Chen Liu, Xu Dong Fan, Xing Zhao Liu, Dan Xie, Yan Rong Li, “Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector”, Nanoph., 10, 1515 (2018).
    [43] Xia J., Huang X., Liu L. Z., et. al. “CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors”, Nanoscale, 6, 8949 (2014).
    [44] Hafeez M., Gan L., Li H. Q., Ma Y., Zhai T. Y., “Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors”, Adv. Funct. Mater., 26, 4551 (2016).
    [45] J. D. Yao, Z. Q. Zheng, J. M. Shao, G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multi-layered WS2 films grown by pulsed-laser deposition”, Nanoscale, 7, 14974 (2015).
    [46] J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, “Relaxation of persistent photoconductivity in Al0.3 Ga0.7 As. ” Phys. Rev. 42, 5855 (1990).
    [47] J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Votchkarev, and H. Morkoc. “Nature of Mg impurities in GaN. ” Appl. Phys. Lett. 69, 1474 ~1996.
    [48] Ben G. Streetman, Sanjay K. Banerjee, “Solid State Electronic Devices 7th Edition,” Pearson. (2017).
    [49] Siao, M. D., Shen, W. C., Chen, R. S., Chang, Z. W., Shih, M. C., Chiu, Y. P., & Cheng, C. M. “Two-dimensional electronic transport and surface electron accumulation in MoS2. ” Nat. Commun. 9, 1442 (2018).
    [50] Amani M., Lien D.-H., Kiriya D., Xiao J., Azcatl A., Noh J., Madhvapathy S. R., Addou R., KC S., Dubey M., Cho K., Wallace R. M., Lee S.-C., He J.-H., Ager J. W. III, Zhang X., Yablonovitch E., Javey A., “Near-unity photoluminescence quantum yield in MoS2.” Science 350, 1065 (2015).
    [51] Lu, H., Kummel, A., and Robertson, J. “Passivating the sulfur vacancy in monolayer MoS2. ” APL Materials. 6, 066104 (2018).

    無法下載圖示 全文公開日期 2026/08/03 (校內網路)
    全文公開日期 2026/08/03 (校外網路)
    全文公開日期 2026/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE