簡易檢索 / 詳目顯示

研究生: 黃怡華
Yi-Hua Huang
論文名稱: 二硫化鈮與二硒化鈮層狀奈米材料之電傳輸特性
Electronic Transport Properties in NbS2 and NbSe2 Layer Nanomaterials
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
趙良君
Liang C. Chao
李奎毅
Kuei-Yi Lee 
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 應用外語系
Department of Applied Foreign Languages
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 二硫化鈮二硒化鈮單晶層狀材料電導率低溫暗電導光電導氧氣敏化機制
外文關鍵詞: NbS2, NbSe2, singel crystal, layer material, conductivity, temperature dependent, photoconductivity, oxygen sensitization
相關次數: 點閱:309下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討以化學汽相傳輸法成長菱形晶系(3R)二硫化鈮與六方晶系(2H)二硒化鈮層狀晶體之二維奈米結構電傳輸特性。利用機械剝離法分離層狀單晶並利用聚焦式離子束技術製作二維奈米結構元件。結果顯示二硫化鈮及二硒化鈮奈米結構之電導率遠小於塊材,低溫暗電導量測也證實奈米結構表現出半導體傳輸特性,此結果不同於塊材之金屬性。此外,塊材與奈米結構在溫度低於200 K時發現不連續的電導率變化,此現象推測為Charge density wave相變。另外,藉由不同波長之光激發,具有半導體性的二硫化鈮及二硒化鈮奈米結構也表現出明顯的光電流反應,光電流隨著光強度增加呈現線性增加。所計算之最佳光電導增益可達100。環境變化之光電導量測顯示這類二維奈米材料遵循氧氣敏化光電導機制。造成二硫化鈮與二硒化鈮的奈米結構與塊材具有不同電傳導特性背後之物理機制也將在本論文探討。


    The electronic transport properties in individual of nanoflakes three rhombohedral (3R) niobium disulphide (NbS2) and two hexagonal (2H) niobium diselenide (NbSe2) mechanically exfoliated from the bulk crystal grown by chemical vapor transport were investigated. It is found that the conductivitiy values of the single-crystalline nanoflakes are much lower than those of their bulk counterparts. Temperature-dependent conductivity measurements show that the 3R-NbS2 and 2H-NbSe2 nanoflakes exhibit semiconducting transport behavior, which are also different from the metallic character in the bulk crystals. In addition, the noncontinuous conductivity variations were observed at the temperature below 200K for both nanoflakes and bulks, which is attributed to probable charge density wave (CDW) transition. In addition, the photoconduction properties in semiconducting nanoflakes were also observed the different wavelength excitation. The photocurrent increases with an increase of light intensity. The optical photoconductivity gain of the nanoflakes devices can reach 100. The environment-dependent photoconductivity measurement indicates that these layer nanomaterials follow the oxygen-sensitive photoconduct mechanism. The probable mechanism resulting in different transport behaviors between the NbS2 and NbSe2 nanoflake and bulk were discussed.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 樣品介紹 4 第三章 實驗方法 5 3.1 二硫化鈮與二硒化鈮層狀金屬之形貌與結構特性檢測 5 3.1.1拉曼散射儀(Raman scattering) 5 3.1.2 X光繞射儀 (X-ray diffraction, XRD) 8 3.1.3掃描式電子顯微鏡 (scanning electron microscope, SEM) 12 3.1.4 聚焦離子束雙數系統(focused-ion-beam, FIB) 15 3.1.5 原子力顯微鏡 (atomic force microscope, AFM) 19 3.2 二硫化鈮與二硒化鈮層狀元件製作 22 3.2.1 元件基板製作 22 3.2.2 層狀材料分散 23 3.2.3 層狀電極製作 25 3.3 層狀材料之暗電導特性研究 27 3.3.1 電流對電壓曲線量測(current-voltage measurement) 27 3.3.2 溫度變化之暗電導量測(temperature dependent measurement) 28 3.4 奈米材料之光電導特性研究 28 3.4.1 功率相依之光電導量測(power-dependent photocurrent measurement) 28 3.4.2 環境變化之光電導量測(ambience-dependent photocurrent measurement) 29 第四章 結果與討論 31 4.1 二硫化鈮 31 4.1.1 二硫化鈮層狀單晶與奈米材料之表面形貌與結構分析 31 4.1.1.1表面形貌 31 4.1.1.2晶體結構 32 4.1.2 二硫化鈮元件製作 35 4.1.2.1奈米結構元件製作 35 4.1.2.2塊材元件製作 36 4.1.2.3奈米結構厚度量測 36 4.1.3 二硫化鈮暗電導分析 41 4.1.3.1奈米結構電導率之計算 41 4.1.3.2溫度變化之暗電導量測 42 4.2 二硒化鈮 48 4.2.1 二硒化鈮層狀單晶與奈米材料之表面形貌與結構分析 48 4.2.1.1表面形貌 48 4.2.1.2晶體結構 49 4.2.2 二硒化鈮層狀元件 52 4.2.2.1奈米結構元件製作 52 4.2.2.2塊材元件製作 53 4.2.2.3奈米結構厚度量測 53 4.2.3 二硒化鈮暗電導分析 58 4.2.3.1奈米結構電導率之計算 58 4.2.3.2溫度變化之暗電導量測 59 4.3 Charge density wave (CDW) 相變 65 4.4 光電導特性分析 70 4.4.1不同波長下之光電導反應 70 4.4.2 光電導效率量測 73 4.4.3 氧氣敏化機制 82 第五章 結論 86 參考文獻 87   圖目錄 圖 1-1 層狀晶體中3R與2H晶格結構示意圖。 3 圖 3-1 拉曼光譜系統圖。 7 圖 3-2 D2 PHASER X光繞射儀器儀器圖。 10 圖 3-3 布拉格定律示意圖。 11 圖 3-4 掃描式電子顯微鏡。 13 圖 3-5 掃描式電子顯微鏡示意圖。 14 圖 3-6 聚焦離子束系統。 17 圖 3-7 聚焦離子束系統示意圖。 18 圖 3-8 原子力學顯微鏡圖。 21 圖 3-9 機械式剝離法示意圖。 24 圖 3-10震落法示意圖。 24 圖 3-11層狀材料元件示意圖。 26 圖 3-12光電導量測實驗架構圖。 30 圖 4-1 層狀二硫化鈮塊材單晶圖。 33 圖 4-2 經機械剝離後層狀二硫化鈮薄片SEM俯視圖。 33 圖 4-3二硫化鈮奈米結構及塊材之Raman譜線圖。 34 圖 4-4二硫化鈮奈米結構之XRD譜線圖。 34 圖 4-5 (a)、(b)經機械剝離後分散至元件基板之二硫化鈮奈米結構SEM圖;(c)、(d)利用FIB製作完成之兩電極及四電極元件SEM圖。 37 圖 4-6二硫化鈮奈米結構之AFM量測圖及高度剖視圖。 38 圖 4-7光學顯微鏡估算二硫化鈮單晶厚度之側面影像。 39 圖 4-8銀膠製作二硫化鈮塊材四電極元件。 39 圖 4-9二硫化鈮(a)兩電極之IV曲線和(b)四電極之VI曲線圖。 44 圖 4-10二硫化鈮奈米結構不同厚度的電導率分佈圖。 46 圖 4-11二硫化鈮(a)奈米結構(b)塊材變溫暗電導量測。 47 圖 4-12層狀二硒化鈮塊材單晶圖。 50 圖 4-13經機械剝離後層狀二硒化鈮薄片SEM俯視圖。 50 圖 4-14二硒化鈮層狀塊材及奈米結構之Raman譜線圖。 51 圖 4-15二硫化鈮層狀奈米結構之XRD譜線圖。 51 圖 4-16(a)、(b)經機械剝離法分散至元件基板之二硒化鈮奈米結構之SEM圖;(c)、(d)利用FIB製作完成之兩電極及四電極元件SEM圖。 54 圖 4-17二硒化鈮奈米結構之AFM量測圖及高度剖視圖。 55 圖 4-18光學顯微鏡二硒化鈮單晶厚度之側面影像。 56 圖 4-19銀膠製作二硒化鈮塊材四電極元件。 56 圖 4-20二硒化鈮(a)兩電極之IV曲線和(b)四電極之VI曲線圖。 61 圖 4-21二硒化鈮奈米結構不同厚度的電導率分布圖。 63 圖 4-22二硒化鈮(a)塊材(b)奈米結構變溫暗電導量測。 64 圖 4-23二硫化鈮(a)塊材(b)奈米結構變溫暗電導量測。 67 圖 4-24二硒化鈮(a)塊材(b)奈米結構變溫暗電導量測。 68 圖 4-25(a)二硫化鈮(b)二硒化鈮塊材與奈米結構變溫暗電導量測。 69 圖 4-26(a)二硫化鈮與(b)二硒化鈮塊材與奈米結構之功率相依響應圖。 71 圖 4-27(a)二硫化鈮與(b)二硒化鈮奈米結構之不同波長功率相依之光電流響應圖。 72 圖 4-28(a)二硫化鈮與(b)二硒化鈮奈米結構之功率相依光響應圖 77 圖 4-29(a)二硫化鈮與(b)二硒化鈮奈米結構之光電流功率相依比較圖 78 圖 4-30(a)二硫化鈮與(b)二硒化鈮奈米結構之光功率相依反應率圖。 79 圖 4-31(a)二硫化鈮與(b)二硒化鈮奈米結構之光電導增益功率相依圖。 79 圖 4-32(a)二硫化鈮與(b)二硒化鈮奈米結構之歸一化增益功率相依圖。 81 圖 4-33(a)二硫化鈮及(b)二硒化鈮奈米結構量測於真空以及大氣環境下之光響應圖。 84 圖 4-33氧氣敏化光電導機制傳輸模型圖。 85   表目錄 表 4-1多層二硫化鈮之兩電極及四電極元件及塊材厚度統計表 40 表 4-2二硫化鈮奈米結構及塊材電導率統計表 45 表 4-3多層二硒化鈮之兩電極及四電極元件及塊材厚度統計表 57 表 4-4二硒化鈮奈米結構及塊材電導率統計表 62

    參考文獻
    [1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, (2012).
    [2] J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys. vol. 18, pp. 193 (1969).
    [3] M. H. van Maaren and G. M. Schaeffer, "Superconductivity in group Va dichalcogenides," Phys. Lett. vol. 20, pp. 131 (1966).
    [4] K. Onabe, M. Naito, and S. Tanaka, "Anisotropy of upper critical field in superconducting," J. Phys. Soc. Jpn. vol. 45, pp.50 (1978).
    [5] Y. Nishio, M. Shirai, N. Suzuki, and K. Motizuki, "Role of electron-lattice intercaction in layered transition metal dichalcogenide 2H-NbS2. I. Phonon Anomaly and superconductivity," J. Phys. Soc. Jpn. vol. 63, pp.156 (1994).
    [6] A. Niazi and A. K. Rastogi, "Low-temperature resistance minimum in non-superconducting 3R-Nb1+xS2 and 3R-GaxNbS2," J. Phys.: Condens. Matter vol. 13, pp. 6787 (2001).
    [7] W. G. Fisher and M. J. Sienko, Inorg. "Stoichiometry, structure, and physical properties of niobium disulfide,” Chem. vol. 19, pp. 39 (1980).
    [8] N. E. Staley, J. Wu, P. Eklund, Y. Liu, L. J. Li, and Z. Xu, "Electric field effect on superconductivity in atomically thin flakes of NbSe2," Physical Review B, vol. 80, (2009).
    [9] I. Naik and A. K. Rastogi, "Charge density wave and superconductivity in 2H-and 4H-NbSe2: A revisit," Pramana-Journal of Physics, vol. 76, pp. 957-963, (2011).
    [10] I. Naik, G. C. Tiwari, C. S. Yadav, and A. K. Rastogi, "Effect of magnetic exchange interaction in resistivity on 2H-Nb1-xVxSe2," Indian Journal of Physics, vol. 87, pp. 1075-1078, (2013).
    [11] M. S. El-Bana, D. Wolverson, S. Russo, G. Balakrishnan, D. M. Paul, and S. J. Bending, "Superconductivity in two-dimensional NbSe2 field effect transistors," Superconductor Science & Technology, vol. 26, (2013).
    [12] K. Iwaya, T. Hanaguri, A. Koizumi, K. Takaki, A. Maeda, and K. Kitazawa, "Electronic state of NbSe2 investigated by STM/STS," Physica B-Condensed Matter, vol. 329, pp. 1598-1599, (2003).
    [13] N. Kumagai and K. Tanno, "Kinetic and structural characteristic of 3R-niobium disulfide as a positive material for secondary lithium batteries," Electrochim. Acta, vol. 36, pp. 935 (1991).
    [14] J. Molenda, T. Bak, and J. Marzec, "Electrical and electrochemical properties of niobium disulphide," Physica Status Solidi a-Applied Research, vol. 156, pp. 159-168, (1996).
    [15] Y. H. Liao, K. S. Park, P. Singh, W. S. Li, and J. B. Goodenough, "Reinvestigation of the electrochemical lithium intercalation in 2H-and 3R-NbS2," Journal of Power Sources, vol. 245, pp. 27-32, Jan 2014.
    [16] W. M. R. Divigalpitiya, R. F. Frindt, and S. R. Morrison, "Effect of humidity on spread NbS2 films," J. Phys. D: Appl. Phys. vol. 23, pp. 966 (1990).
    [17] C. Geantet, J. Afonso, M. Breysse, N. Allali, and M. Danot, "Niobium sulfides as catalysts for hydrotreating reactions," Catalysis Today, vol. 28, pp. 23-30, (1996).
    [18] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, Nov 2012.
    [19] N. J. Doran, "Electronic structure and band theory of transition metal dichalcogenides," Physica B, vol. 99, pp.227 (1980).
    [20] J. Kacmarcik, Z. Pribulova, C. Marcenat, T. Klein, P. Rodiere, L. Cario, et al., "Specific heat measurements of a superconducting NbS2 single crystal in an external magnetic field: Energy gap structure," Physical Review B, vol. 82 (2010).
    [21] M. Leroux, M. Le Tacon, M. Calandra, L. Cario, M. A. Measson, P. Diener, et al., "Anharmonic suppression of charge density waves in 2H-NbS2," Physical Review B, vol. 86, (2012).
    [22] M. Leroux, P. Rodiere, L. Cario, and T. Klein, "Anisotropy and temperature dependence of the first critical field in 2H-NbS2," Physica B-Condensed Matter, vol. 407, pp. 1813-1815, (2012).
    [23] I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, "Superconducting Density of States and Vortex Cores of 2H-NbS2," Physical Review Letters, vol. 101, (2008).
    [24] W. Y. Ge, K. Kawahara, M. Tsuji, and H. Ago, "Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD," Nanoscale, vol. 5, pp. 5773-5778, (2013).
    [25] A. Meerschaut and C. Deudon, "Crystal structure studies of the 3R-Nb1.09S2 and the 2H-NbSe2 compounds: correlation between nonstoichiometry and stacking type (= polytypism)," Materials Research Bulletin, vol. 36, pp. 1721-1727, (2001).
    [26] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, (2005).
    [27] B. D. Cullity, S. R. Stock, "Elements of X-ray diffraction," Prentice Hall, New Jersey (2001).
    [28] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization,” IOP Publishing, Bristol, (1994).
    [29] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, "Electron Beam Lithography in Nanoscale Fabrication: Recent Development," IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149, (2003).
    [30] A. A. Tseng, "Recent developments in micromilling using focused ion beam technology," J. Micromech. Microeng., Vol. 14, pp. R15–R34, (2004).
    [31] A. A. Tseng, "Recent Developments in Nanofabrication using Focused Ion Beams," Small, Vol. 1, pp. 924–939, (2005).
    [32] F. Braet, R. De Zanger, and E. Wisse, "Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells," Journal of Microscopy, Vol. 186, pages 84–87, (1997)
    [33] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers," Appl. Phys. Lett., Vol. 97, 211102 (3pp), (2010).
    [34] C. Y. Nam, D. Tham, J. E. Fischer, "Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires," Nano Lett., Vol. 5, pp. 2029-2033, (2005).
    [35] W. Ge, K. Kawahara, M. Tsuji, and H. Ago, "Raman scattering from 2H and 3R-NbS2," Nanoscale vol. 5, pp. 5773, (2013).
    [36] N. E. Staley, J. Wu, P. Eklund, Y. Liu, L. J. Li, and Z. Xu, "Electric field effect on superconductivity in atomically thin flakes of NbSe2," Physical Review B, vol. 80, (2009).
    [37] C. M. Pereira, W. Y. Liang, "Raman studies of the normal phase of 2H-NbSe2," J. Phys. C: Solid State Phys., vol, 15, pp. 991-995, (1982)
    [38] J. A. Wilson, F. J. Di Salvo, and S. Mahajan, "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides (Reprinted from Advances in Physics, vol 32, pg 882, 1974)," Advances in Physics, vol. 50, pp. 1171-1248, (2001).
    [39] K. Rossnagel, "On the origin of charge-density waves in select layered transition-metal dichalcogenides," Journal of Physics-Condensed Matter, vol. 23, (2011).
    [40] R. Corcoran, P. Meeson, Y. Onuki, P. A. Probst, M. Springford, K. Takita, et al., "QUANTUM OSCILLATIONS IN THE MIXED-STATE OF THE TYPE-II SUPERCONDUCTOR 2H-NBSE2," Journal of Physics-Condensed Matter, vol. 6, pp. 4479-4492, (1994).
    [41] M. M. May, C. Brabetz, C. Janowitz, and R. Manzke, "Charge-Density-Wave Phase of 1T-TiSe2: The Influence of Conduction Band Population," Physical Review Letters, vol. 107, (2011).
    [42] M. M. May, C. Brabetz, C. Janowitz, and R. Manzke, "The influence of different growth conditions on the charge density wave transition of 1T-TiSe2," Journal of Electron Spectroscopy and Related Phenomena, vol. 184, pp. 180-183, (2011).
    [43] F. J. Di Salvo, D. E. Moncton, and J. V. Waszczak, "Electronic properties and superlattice formation in the semimetal TiSe2," Phys. Rev. B, vol. 14, pp. 4321, (1976).
    [44] P. Bhattacharya, "Semiconductor optoelectronic devices," Prentice-Hall, New Jersey, Chap. 8, pp. 346-351, (1997).
    [45] M. Razeghi, A. Rogalski, "Semiconductor ultraviolet detectors," J. Appl. Phys., Vol. 79, pp. 7433-7473, (1996).
    [46] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, "Ultahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett., Vol. 91, 223106 (3pp), (2007).
    [47] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, and Y. J. Chen, "Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition," Nanoscale Research Letters, vol. 8, (2013).
    [48] J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth, S. Mathur, "Toward a systematic understanding of photodetectors based on individual metal oxide nanowires, " J. Phys. Chem. C, Vol. 112, pp. 14639-14644, (2008).
    [49] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, "On the photoconduction properties of low resistivity TiO2 nanotubes," Nanotechnology, Vol. 21, 445703(6pp), (2010).
    [50] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, "ZnO nanowire UV photodetectors with high internal gain, " Nano Lett., Vol. 7, pp. 1003-1009, (2007).
    [51] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, "High photocurrent gain in SnO2 nanowires," Appl. Phys. Lett., Vol. 93, 112115 (3pp), (2008).
    [52] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, Y. S. Huang, "Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain," J. Phys. Chem. C, Vol. 116, pp. 4267-4272, (2012).

    QR CODE