簡易檢索 / 詳目顯示

研究生: 吳適煌
Shih-Huang Wu
論文名稱: 3D 天線場型量測與天線特性評估之應用
Applications of Measurement of 3D Antenna Patterns and Evaluation of Antenna Characteristics
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 張勝良
Sheng-Lyang Jang
王秀仁
Show-Ran Wang
劉榮宜
Ron-Yi Liu
陳國龍
Kuo-Long Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 80
中文關鍵詞: 3D 天線場型總輻射功率全球互通微波存取T型單極天線
外文關鍵詞: 3D Antenna Pattern, Total Radiated Power, WiMAX, T-Shaped Monopole
相關次數: 點閱:200下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般常用於表示天線輻射特性的是E平面與H平面極化場型,然而3D天線場型展現出較2D場型還多的輻射特性諸如最大增益、指向性、總輻射功率與幅射效率等,因為2D極化場型所包覆的兩個切面無法完整的描述空間特性。
    在本文中將介紹與探討兩種3D天線場型量測之方法, Conical-Cut Method與Great-Circle Method,其所包覆的35個切面可以完整的描述空間特性。另外提出ㄧ個簡單、快速,利用運算2D場型來建立3D場型的方法,因為3D場型需要較高的建置成本與較多的量測時間。將E1平面場型沿著H平面場型上的軌跡繞Z軸旋轉來獲的其他的E平面場型,建構一個相近的3D場型。實際量測的3D場型與利用2D場型運算的3D場型將被拿來比較與討論。最大的增益可能不會剛好落在三個平面場型上,若只有量測2D場型可能會忽略真正最大的增益,而天線幅射效率更是需要3D場型來獲得,不論是量測或是運算所得,本文中所研究的例子其誤差在12%以內。
    此外將以ㄧ個WLAN/WiMAX天線為一應用,討論從天線設計至3D天線場型量測與運算,分析其天線特性及比較其差異。關於所提天線詳細的設計已被敘述於文中,此天線已成功地實現,實驗結果已呈現,量測與運算所的3D場型及天線特性亦被分析。


    Usually, E-plane and H-plane polar patterns are used to represent the antenna radiation characteristics. But 3D antenna pattern has capability to exhibit more radiation characteristics than 2D patterns such as peak gain, directivity, total radiated power, and radiation efficiency, because 2D polar patterns containing only two cuts can not exhibit the spatial characteristics completely.
    In this thesis, two methods of 3D antenna pattern measurement (Conical-Cut Method and Great-Circle Method), which can contain 35 cuts to exhibit spatial characteristics more completely, are introduced and discussed. Besides, a simple and fast alternative approach utilizing 2D patterns to construct 3D patterns is presented, due to a higher cost of the build and longer test duration of 3D pattern measurement. Revolving the E1-plane pattern around the Z-axis along the trace of H-plane pattern can obtain other E-plane patterns to construct a similar 3D pattern. The measured 3D pattern and the calculated 3D pattern using 2D patterns will be analyzed and discussed. The peak gain may not occur at either three plane patterns. If only plane patterns are measured, the peak gain might be missed. The antenna radiation efficiency has to be obtained by either the 3D pattern measurement or calculation. The study cases in this thesis, the deviation of efficiency is within 12%.
    In addition, an application for a WLAN/WiMAX antenna is discussed, from the antenna design to measurement and calculated of 3D antenna patterns, and the antenna characteristics obtained by them are analyzed and compared. Detail designs of the proposed antenna are described. The measured and calculated 3D patterns as well as antenna characteristics are also analyzed.

    FIGURES AND TABLE CONTENTS VI CHAPTER 1 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 OUTLINE OF THE THESIS 3 CHAPTER 2 4 BASIC THEORY OF DIPOLE AND MONOPOLE ANTENNA 4 2.1 THIN DIPOLE ANTENNA 4 2.2 SELF-INPUT IMPEDANCE 8 2.3 EFFECTIVE WIDTH OF HALF-WAVE DIPOLE ANTENNA 12 2.4 EQUIVALENT RADII OF WIRE DIPOLE 12 2.5 IMAGE THEORY 13 2.6 MONOPOLE ANTENNA 17 2.7 INVERTED-L ANTENNA 18 CHAPTER 3 20 THE METHODOLOGY OF 3D PATTERN MEASUREMENT AND EVALUATION OF ANTENNA CHARACTERISTICS 20 3.1 MEASUREMENT TECHNIQUES 20 3.2 CONICAL-CUT METHOD 22 3.3 GREAT-CIRCLE METHOD 23 3.4 MEASUREMENT SETUP 24 3.5 MINIMUM MEASUREMENT DISTANCE 26 3.6 TOTAL RADIATED POWER 26 3.7 DIRECTIVITY, GAIN, AND EFFICIENCY 29 3.8 CALCULATION OF 3D PATTERN USING 2D PATTERNS 31 3.9 EVALUATION OF ANTENNA CHARACTERISTICS FROM 3D PATTERN 33 3.10 CALIBRATION OF 3D ANTENNA PATTERN MEASUREMENT 39 CHAPTER 4 42 APPLICATIONS OF 3D PATTERN MEASUREMENT FOR WLAN/WIMAX 42 4.1 PLANAR MONOPOLE ANTENNA 42 4.2 PLANAR INVERTED-L ANTENNA 44 4.3 PLANAR T-SHAPED MONOPOLE ANTENNA 46 4.5 PLANAR T-SHAPED MONOPOLE WITH A SHORTED PARASITIC STRIP 48 4.5 EXPERIMENTAL RESULT AND DISCUSSION 51 CHAPTER 5 64 CONCLUSION AND FUTURE WORK 64 REFERENCE 66

    [1] “CTIA Test Plan for Mobile Station Over the Air Performance,” Revision 2.1, Washington, DC: CTIA, 2005.
    [2] MD Foegelle, “Antenna Pattern Measurement: Concepts and Techniques,” Compliance Engineering, Compliance Engineering 19, no. 3, pp. 22-33, 2002.
    [3] MD Foegelle, “Antenna Pattern Measurement: Theory and Equations,” Compliance Engineering, Compliance Engineering 19, no. 3, pp. 34-43, 2002.
    [4] K. L. Wong, L. C. Chou and C. M. Su, “Dual-band flat-plate antenna with a shorted parasitic element for laptop applications,” IEEE Trans. Antennas Propagat., vol. 45, pp. 539-544, Jan. 2005.
    [5] J. D. Kraus, R. J. Marhefka ”Antennas For All Application” McGraw-Hill Book Company, pp. 181, 2002.
    [6] R. S. Elliott ”Antenna theory and design ” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 286.
    [7] S. Drabowitch, A. Papiernik, H. Griffiths and J. Encinas ” Modern Antenna” Chapman & Hall, 1998
    [8] D. M. Pozar ” Microwave Engineering” University of Massachusetts at Amherst, John Wiley & Sons, INC, second edition, pp. 258-266
    [9] G. H. Brown and O. M. Woodward, Jr., ”Experimentally Determined Impedance Characteristics of Cylindrical Antenna” Proc. IRE, Vol. 33, pp. 257-262, 1945
    [10] R. E. Collin ” Antennas and Radio wave Propagation” McGraw-Hill Book Company 1985
    [11] Warren L. Stutzman, Gary A. Thiele, “Antenna Theory and Design”, John Wiley & Sons, pp. 165-174, 1998.
    [12] C. A. Balanis ” Antenna Theory Analysis and Design” John Wiley & Sons, INC, 1997.
    [13] K. Ito and T. Hosoe, “Study on the characteristics of planar inverted F antenna mounted laptop computers for wireless LAN,” IEEE Antennas Propag. Symp., vol. 54, no.8 , pp. 3267-3270, Aug. 2006.
    [14] S.-B. Chen, Y.-C. Jaio, W.-W., and F.-S. Zhang, “Modified T-shaped planar monopole antennas for multiband operation,” IEEE Trans. on Microw. Theory Tech., vol. 54, no. 8, pp. 3267-3270, Aug. 2006.
    [15] Y.-L. Kuo and K.-L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations,” IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2187–2192, Sep. 2003.
    [16] Deploying License-Exempt WiMAX Solution Intel Corp. Santa Clara, CA, 2005 [Online]. Available: http://www.intel.com/ netcomms/ technologies/wimax
    [17] WorldWide interoperability for microwave access forum or WiMAX forum, http://www.wimaxforum.org
    [18] A. D. Wunsch, “A closed-form expression for the driving-point impedance of the small inverted L antenna,” IEEE Trans. Antennas Propaga., vol. 44, pp. 236-242, Feb. 1996.
    [19] M. Ali, M. Okoniewski, M. A. Stuchly, and S. S. Stuchly, “Dual-Frequency strip-sleeve monopole for laptop computers,” IEEE Trans. Antennas Propag., vol. 47, no. 2, pp. 317-323, Feb. 1999.
    [20] C. M. Su,W. S. Chen, and K. L.Wong, “Compact dual-band metal-plate antenna for 2.4/5.2-GHz WLAN operation,” Microwave Opt. Technol. Lett., vol. 38, pp. 113–115, Jul. 2003.
    [21] C.-Y. Huang and P.-Y. Chiu, “Dual-band monopole antenna with shorted parasitic element,” Electron. Lett., vol. 41 no. 21, pp. 223-224, Oct. 2005.
    [22] J.-W. Wu, Y.-D. Wang, H.-M. Hsiao, and J.-H. Lu, “T-shaped monopole antenna with shorted L-shaped strip-sleeves for WLAN 2.4/5.8-GHz operation,” Microwave Opt. Technol. Lett., vol. 46, no. 1, pp. 65-67, Jul. 2005.

    QR CODE