簡易檢索 / 詳目顯示

研究生: 彭展崢
Jhan-Jheng Peng
論文名稱: 使用濺鍍法成長矽奈米結構
The growth of silicon nanostructure by sputter technique
指導教授: 周賢鎧
Shyankay Jou
口試委員: 胡毅
Yi Hu
鄭偉鈞
Wei Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 矽奈米錐矽奈米線濺鍍法
外文關鍵詞: silicon nanocones, silicon nanowires, sputtering
相關次數: 點閱:271下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究的內容主要分成三個部分。第一部份是在矽基材上製備所需的金奈米顆粒分佈,本實驗是先利用鍍金機在基材上鍍上一層金的薄膜後,再藉由控制退火的溫度、時間和金薄膜的厚度,來完成金奈米顆粒的製備。
實驗的第二部份是在石英管爐中藉由熱處理的過程,分別以不同的溫度、時間、氣氛與金膜厚度來成長矽奈米線,並藉由控制反應參數,來探討對成長矽奈米線之影響。實驗結果發現在金膜厚度為20mA 25sec的條件下,通入1000sccm流量的Ar和Ar-20%H2,並在950℃下成長30min,可得到密度最高、分佈性均勻的矽奈米線。
實驗的第三部份是利用已製備好金奈米顆粒分佈的試片,以磁控式濺鍍法成長矽奈米結構,並藉由改變濺鍍功率、基材溫度、反應氣氛和金膜厚度等條件來探討這些反應參數對成長矽奈米結構的影響。當使用RF20W、Ar:H2 = 4:16 sccm、鍍膜壓力1.7x10-2 Torr與基材溫度450℃下,可以成功成長出矽奈米錐結構,本論文進一步使用掃瞄式電子顯微鏡觀察矽奈米錐的表面型態,並以光致發光光譜儀來量測矽奈米錐的發光性質。


In this thesis, the study is mainly divided into three parts. The first part of study focuses on the fabrication of gold nanoparticles on silicon substrate. In this study, the gold film was deposited by sputtering. The formation of gold nanoparticles was controlled by annealing temperature, time and thickness of initial gold film.
The second part of study focuses on annealing of gold-coated Si substrate in quartz furnace. The growth of silicon nanowires were controlled by different temperature, time, atmosphere and thickness of initial gold film, so as to probe into the growth of silicon nanowires. According to the result, the well distribution and high density of silicon nanowires were generated from the substrate with a gold film previously deposited with 20mA of sputtering current and 25sec duration. The flow rates of argon and argon with 20% hydrogen was 1000 sccm flow generating silicon nanowires, and the growth temperature and time are 950℃ and 30 minutes.
The third part of study focuses on the fabrication of silicon nanocones by a RF sputter deposition technique. The growth of silicon nanocones were controlled by sputtering power, substrate temperature, atmosphere and thickness of initial gold film, so as to probe into the growth of silicon nanocones. A favorable condition for growing silicon nanocones was found with a sputtering power of 20 Watts, the gas flow of argon and hydrogen as 4 and 16 sccm, the sputtering pressure of 1.7x10-2 Torr, and substrate temperature of 450℃. The surface morphology was analyzed by SEM and the optical property has been studied by photoluminescence.

第一章、前言……………………………………………………………1 第二章、實驗原理與文獻回顧…………………………………………2 2.1 矽奈米線的成長機制…………………………………………2 2.1.1 氣液固成長機制(Vapor-Liquid-Solid mechanism, VLS)…………………………………………………….3 2.1.2 氧化物輔助成長機制(oxide-assisted mechanism, OAG)…………………………………………………….6 2.1.3 固液固成長機制(Solid-Liquid-Solid mechanism, SLS)…………………………………………………….7 2.2 矽奈米線的製備方法…………………………………………8 2.2.1 化學氣相沉積法 ( Chemical Vapor Deposition, CVD)…………………………………………………….9 2.2.2 雷射熔融法……………………………………………12 2.2.3 蒸鍍法…………………………………………………14 2.2.4 熱退火…………………………………………………15 2.3 不連續分散性金之製備…………………………………….16 2.3.1 利用金奈米溶液形成奈米金粒子分佈………………17 2.3.2 利用退火形成奈米金-矽合金分佈………………….20 2.4 矽奈米錐之製備方法……………………………………….22 第三章、實驗步驟與方法…………………………………………….26 3.1 實驗用材料與藥品規格…………………………………….26 3.2 實驗儀器與裝置…………………………………………….27 3.2.1 磁控式濺鍍系統………………………………………27 3.2.2 熱處理用石英管爐……………………………………29 3.2.3 鍍金機…………………………………………………31 3.2.4 高溫爐…………………………………………………31 3.3 實驗步驟…………………………………………………….32 3.3.1 基材清洗流程…………………………………………32 3.3.2 奈米金顆粒試片之製備………………………………33 3.3.3 利用石英管爐成長矽奈米線之流程…………………36 3.3.4 利用磁控式濺鍍系統成長矽奈米錐之流程…………38 3.4 分析與鑑定………………………………………………….40 3.4.1 X-Ray繞射分析 (XRD)……………………………….40 3.4.2 掃瞄式電子顯微鏡 (Scanning Electron Microscope, SEM)……………………………………41 3.4.3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)……42 3.4.4 光激發螢光光譜 (Photoluminescence spectra, PL)…………………43 第四章 結果與討論………………………………………………………………….46 4.1 不同退火溫度對製備奈米金顆粒之影響……………………………………….46 4.1.1 不同退火溫度對製備奈米金顆粒之影響…………………………………47 4.1.1.1 在矽基材上,600和650℃大氣下退火10min製備金奈米顆粒 之比較…………………………………………………………….47 4.1.1.2 在氧化矽基材上,600和650℃大氣下退火30min製備金奈米顆粒之比 較………………………………………………………………….49 4.1.2 不同退火時間對製備奈米金顆粒之影響…………………………………51 4.1.2.1 在矽基材上,600℃大氣下退火10和60min製備金奈米顆粒 之比較…………………………………………………………….51 4.1.2.2 在氧化矽基材上,650℃大氣下退火10和30min製備金奈米顆粒之比 較………………………………………………………………….53 4.1.3 不同鍍金時間對製備奈米金顆粒之影響…………………………………57 4.1.3.1 在矽與氧化矽基材上,650℃大氣下對不同厚度金膜退火10 min製備金奈 米顆粒之比較…………………………………………………….57 4.2 矽奈米線之製備與分析………………………………………………………….63 4.2.1 經由石英管爐利用熱處理成長矽奈米線可能成長機制之探討…………63 4.2.2 在不同熱處理溫度成長矽奈米線,探討溫度對成長矽奈米線之影響…64 4.2.3 在不同熱處理時間成長矽奈米線,探討時間對成長矽奈米線之影響…66 4.2.4 在不同熱處理氣氛成長矽奈米線,探討氣氛對成長矽奈米線之影響…68 4.2.5 用不同厚度金膜來成長矽奈米線,探討金膜厚度對矽奈米線之影響…70 4.2.6 矽奈米線之PL分析…………………………………………………………72 4.2.7 矽奈米線之TEM分析……………………………………………………….73 4.3 矽奈米錐之製備與分析………………………………………………………….80 4.3.1 利用磁控式濺鍍來成長矽奈米錐可能成長機制之探討…………………80 4.3.2 不同濺鍍功率對矽奈米錐成長之影響……………………………………81 4.3.3 不同濺鍍氣氛對矽奈米錐成長之影響-OES…………………………….90 4.3.4 不同基材溫度對矽奈米錐成長之影響……………………………………94 4.3.5 不同金奈米顆粒的分佈性與尺寸對矽奈米錐成長之影響………………96 4.3.6 利用金屬鈦做遮蔽層來觀察矽奈米錐之成長機制…………………….102 4.3.7 矽奈米錐之PL分析……………………………………………………….104 4.3.8 矽奈米錐之TEM分析………………………………………………………105 第五章 結論…………………………………………………………………………108 Reference…………………………………………………………………………….110 附錄

[1] 川合知二(工業調查會),「奈米科技」,工業技術研究院,第23頁,台北,全華科技,民國91年,12月。
[2] Y. Ahn, J. Dunning and J. Park, “Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors.”, Nano. Lett. (2005) 1367-1370.
[3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature ultraviolet nanowire nanolasers.”, Science 292 (2001) 1897-1899.
[4] C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays”, Physica E 30 (2005) 169–173.
[5] Y. L. Chang, S. S. Yi, E. Chow, G. Girolami, Y. Young, M. Liu, J. Albuschies and J. Amano, “Controlled formation of individually seeded, electrically addressable silicon nanowire arrays for device integration”, Appl. Phys. Lett. 89 (2006) 223123.
[6] Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science 293 (2001) 1289-1292.
[7] R. S. Wagner and W. C. Ellis, “VAPOR-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89-90.
[8] D. Pribat and C. S. Cojocaru, “Nanowire-based active matrix backplanes for the control of large area X-ray imagers”, Nucl. Instrum. Methods Phys. Res. A 563 (2006) 82–87.
[9] A. I. Hochbaum, R. Fan, R. He and P. Yang, “Controlled growth of Si nanowire arrays for device integration”, Nano. Lett. 5 (2005) 457-460.
[10] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang and C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires”, Appl. Phys. Lett. 78 (2006) 2214-2216.
[11] J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction”, J. Vac. Sci. Technol. B 15 (1997) 554-557.
[12] J. Albuschies, M. Baus, O. Winkler, B. Hadam, B. Spanganberg and H. Kurz, “High-density silicon nanowire growth from self-assembled Au nanoparticles”, Microelectron. Eng. 83 (2006) 1530-1533.
[13] D.W. Kwak, H.Y. Cho and W.-C. Yang, “Dimensional evolution of silicon nanowires synthesized by Au–Si island-catalyzed chemical vapor deposition”, Physica E 37 (2007) 153-157.
[14] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires”, Nano. Lett. 4 (2004) 433-436.
[15] Z. Wang and J. L. Coffer, “Size Control and Associated Photophysics of Erbium-Doped Silicon Nanowires”, Phys. Chem. B 108 (2004) 2497-2500.
[16] T.. Stelzner, G. Andra, F. Falk, E. Wendler, W. Wesch, R. Scholz c and S. Christiansen, “Silicon nanowire synthesis on metal implanted silicon substrates”, Nucl. Instrum. Meth. Phys. Res. B 257 (2007) 172-176.
[17] Z. Q. Liu, W. Y. Zhou, L. F. Sun, D. S. Tang, X. P. Zou, Y. B. Li, C. Y. Wang, G. Wang and S. S. Xie, “Growth of amorphous silicon nanowires”, Chem. Phys. Lett. 341 (2001) 523-528.
[18] X.Q. Yan, D.F. Liu, L.J. Ci, J.X. Wang, Z.P. Zhou, H.J. Yuan, L. Song, Y. Gao, L.F. Liu, W.Y. Zhou, G. Wang and S.S. Xie, “H2-assisted control growth of Si nanowires ”, J. Cryst. Growth 257 (2003) 69–74.
[19] Z.Q. Liu, Z.W. Pan, L.F. Sun, D.S. Tang, W.Y. Zhou, G. Wang and L.X. Qian, S.S. Xie, “Synthesis of silicon nanowires using Au-Pd nanoparticles catalyst on silicon substrate”, J. Phys. Chem. Solids 61 (2000) 1171–1174.
[20] S.Q. Feng, D.P. Yu, H.Z. Zhang, Z.G. Bai and Y. Ding, “The growth mechanism of silicon nanowires and their quantum confinement effect”, J. Cryst. Growth 209 (2000) 513-517.
[21] S. Sharma, T.I. Kamins and R. Stanley Williams, “Diameter control of Ti-catalyzed silicon nanowires”, J. Cryst. Growth 267 (2004) 613–618.
[22] N. Sakulchaicharoen and D. E. Resasco, “Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst”, Chem. Phys. Lett. 377 (2003) 377–383.
[23] J. Zhou, Z. Li, Y. Chen, G. Wang and M. Han, “Large-scale array of highly oriented silicon-rich micro-nanowires induced by gas flow steering”, Solid State Commun. 133 (2005) 271–275.
[24] Z.Zhang, X.H. Fan, L. Xu, C.S. Lee and S.T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001) 18-24.
[25] J. Yu, J. Sha, L. Wang, Q. Yang and D. Yang, “One-dimensional silicon nanostructures fabricated by thermal evaporation”, Mater. Sci. Eng. C 26 (2006) 800-804.
[26] Y. Yao, F. Li and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts”, Chem. Phys. Lett. 406 (2005) 381–385.
[27] L.Z. Pei, Y.H. Tang, Y.W. Chen, C. Guo, W. Zhang and Y. Zhang, “Silicon nanowires grown from silicon monoxide under hydrothermal conditions”, J. Cryst. Growth 289 (2006) 423–427.
[28] Y.Y. Wong, M. Yahaya, M. Mat Salleh and B. Yeop Majlis, “Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism”, Sci. Tech. Adv. Mater. 6 (2005) 330–334.
[29] Y. Coffinier, S. Janel, A. Addad, R. Blossey, L. Gengembre, E. Payen and R. Boukherroub, “Preparation of Superhydrophobic Silicon Oxide Nanowire Surfaces”, Langmuir 23 (2007) 1608-1611.
[30] H. K. Park, B. Yang, S. W. Kim, G. H. Kim, D. H. Youn, S. H. Kim and S. L. Maeng, “Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates”, Physica E 37 (2007) 158-162.
[31] D.P. Yu, Y.J. Xing, Q.L. Hang, H.F. Yana, J. Xu, Z.H. Xi and S.Q. Fen, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism”, Physica E 9 (2001) 305-309.
[32] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi and S.Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism”, Chem. Phys. Lett. 323 (2000) 224–228.
[33] X. Chen, Y. Xing, J. Xu, J. Xiang and D. Yu, “Rational growth of highly oriented amorphous silicon nanowire films”, Chem. Phys. Lett. 374 (2003) 626–630.
[34] J. B. Chang, J. Z. Liu, P. X. Yan, L. F. Bai, Z.J. Yan, X. M. Yuan and Q. Yang, “Ultrafast growth of single-crystalline Si nanowires”, Mater. Lett. 60 (2006) 2125–2128.
[35] N. Fukata, T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, K. Murakami, “Phonon confinement in silicon nanowires synthesized by laser ablation”, Physica
B 376-377 (2006) 864-867.
[36] K. A. Jeon, J. H. Kim and S. Y. Lee, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Prog. Solid State Chem. 33 (2005) 107-112.
[37] Y. H. Yang, S. J. Wu, H. S. Chiu, P. I. Lin, and Y. T. Chen, “Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation”, J. Phys. Chem. B (2004) 108 846-852.
[38] N. Fukata, T. Oshima, T. Tsurui, S. Ito and K. Murakami, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Sci. Tech. Adv. Mater. 6 (2005) 628–632.
[39] Y.Q. Chen, K. Zhang, B. Miao, B. Wang and J.G. Hou, “Temperature dependence of morphology and diameter of silicon nanowires synthesized by laser ablation”, Chem. Phys. Lett. 358 (2002) 396–400.
[40] Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello and S.T. Lee,
“One-dimensional growth mechanism of crystalline silicon nanowires”, J. Cryst. Growth 197 (1999) 136-140.
[41] J. Niu, J. Sha and D. Yang, “Silicon nanowires fabricatedby thermal evaporation of silicon monoxide”, Physica E 23 (2004) 131-134.
[42] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders”, J. Phys. Chem. B 105 (2001) 2507-2514.
[43] V. Sivakov, F. Heyroth, F. Falk, G. Andra and S. Christiansen, “Silicon nanowire growth by electron beam evaporation: Kinetic and energetic contributions to the growth morphology”, J. Cryst. Growth 300 (2007) 288–293.
[44] L. Schubert, P. Werner and U. Go1sele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano. Lett. 5 (2005) 2524-2527.
[45] K. Peng and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays”, J. Electroanal. Chem. 558 (2003) 35-39.
[46] X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano. Lett. 3 (2003) 93-99.
[47] L.Z. Pei, Y.H. Tang, Y.W. Chen, C. Guo, W. Zhang and Y. Zhang, “Silicon nanowires grown from silicon monoxide under hydrothermal conditions”, J. Cryst. Growth 289 (2006) 423-427.
[48] J. F. Hsu and B. R. Huang, “The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate”, Thin Solid Films 514 (2006) 20–24.
[49] 莊尚餘,陳學禮,鄭旭君,王鉦元,朱鐵吉,林俊宏,「金奈米粒子之特殊光學特性與應用之研究」,奈米通訊,第十二卷第三期,8-14,民國94年,8月。
[50] 施伯霖,「矽奈米線之生長與特性研究」。台大電子工程研究所碩士論文,民國93年,6月。
[51] Q. Wan, T.H. Wang and C.L. Lin, “Self-assembled Au-Si alloy nanocones: synthesis and electron field emission characteristics”, Appl. Surf. Sci. 221 (2004) 38-42.
[52] Y. Yao, F. Li and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oside-assisted growth and gold catalysts”, Chem. Phys. Lett. 406 (2005) 381-385.
[53] J. Wwstwater, D. P. Gosain, S. Tomiya and S. Usui, “Growth of
silicon nanowires via gold/silane vapor liquid solid reaction”, J. Vac. Sci.
Technol. B 15 (1997) 554-557.
[54] S. Sharma, T.I. Kamins, M.S. Islam, R. Stanley Williams and A.F. Marshall, “Structure characteristics and connection mechanism of gold-catalyzed bridging silicon nanowires”, J. Cryst. Growth 280 (2005) 562-568.
[55] X.B. Zeng, Y.Y. Xu, S.B. Zang, Z.H. Hu, H.W. Diao. Y.Q. Wang, G.L. Kong and X.B. Liao “Silicon nanowires grown on a pre-annealed Si substrate”, J. Cryst. Growth 247 (2003) 13-16.
[56] Z.Y. Zhanga, X.L. Wua, J.C. Shena, L.W. Yanga, Y. Shia, Paul K. Chub and G.G. Siu, “Light emission from as-prepared and oxidized Si nanowires with diameters of 5–15nm”, J. Cryst. Growth 285 (2005) 620–626.
[57] J. Qi, J. M. White, A. M. Belcher and Y. Masumoto, “Optical spectroscopy of silicon nanowires”, Chem. Phys. Lett. 372 (2003) 763–766.
[58] J. Niu, J. Sha, Y. Wang, X. Ma and D. Yang, “Crystallization and disappearance of defects of the annealed silicon nanowires”, Microelectron. Eng. 66 (2003) 65–69.
[59] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires”, Chem. Phys. Lett. 336 (2001) 53-56.
[60] D. D. D. Ma and S. T. Lee, “Strong polarization-dependent photoluminescence from silicon nanowire fibers”, Appl. Phys. Lett. 87 (2005) 033107
[61] 謝嘉民、賴一凡、林永昌、枋志堯,「光激發螢光量測的原理、架構及應用」,奈米通訊,第十二卷,第二期,第28~39頁,民國94年,5月。
[62] 陳泰祥,「氮化銦鎵與氮化鎵量子井發光二極體的光學性質研究」,私立中原大學應用物理研究所碩士學位論文,民國93年,6月。
[63] Y. Yang, B. K. Tay, X. W. Suna, H. M. Fan and Z. X. Shen, “Photoluminescence and growth mechanism of amorphous silicananowires by vapor phase transport”, Physica E 31 (2006) 218-223.
[64] Q. Wei, G. Meng, X. An, Y. Hao and L. Zhang, “Synthesis and photoluminescence of aligned straight silica nanowires on Si substrate”, Solid State Commun. 138 (2006) 325-330.
[65] X.Q. Yan, D.F. Liu, L.J. Ci, J.X. Wang, Z.P. Zhou, H.J. Yuan, L. Song, Y. Gao, L.F. Liu, W.Y. Zhou and G. Wang and S.S. Xie, “H2-assisted control growth of Si nanowires”, J. Cryst. Growth 257 (2003) 69-74.
[66] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou,
W. Qian, G. C. Xiong and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett. 73 (1998) 3076-3078.
[67] X. D. Bai, Z. Xu, S. Liu and E. G. Wang, “Aligned 1D silicon nanostructure arrays by plasma etching”, Sci. Tech. Adv. Mater. 6 (2005) 804-808.
[68] K. L. Klein, A. V. Melechko, J. D. Fowlkes, P. D. Rack, D. K. Hensley, H. M. Meyer III, L. F. Allard, T. E. McKnight and M. L. Simpson, “Formation of Ultra-sharp Vertically Aligned Cu-Si Nanocones by a DC Plasma Process”, J. Phys. Chem. B 110 ( 2006) 4766-4771.
[69] A. Wellner, R. E. Palmer, J. G. Zheng, C. J. Kiely and K. W. Kolasinski, “Mechanisms of visible photoluminescence from nanoscale silicon cones”,
J. Appl. Phys. 91 (2002) 3294-3298.
[70] X. M. Meng, N. G. Shang, C. S. Lee, I. Bello1 and S. T. Lee, “Fabrication and microstructures of Si composite nanocone arrays”, Phys. Stat. Sol. 202 (2005) 2479-2483.
[71] L. Cao, B. Garipcan, J. S. Atchison, C. Ni, B. Nabet and J. E. Spanier, “Instability and Transport of Metal Catalyst in the Growth of Tapered Silicon Nanowires”, Nano. Lett. 6 (2006) 1852-1857.
[72] Z. Yang, H. Shirai, T. Kobayashi and Y. Hasegawa, “Synthesis of Si nanocones using rf microplasma at atmospheric pressure”, Thin Solid Films 515 (2007) 4153-4158.
[73] S. Chaisitsak, “Fabrication of amorphous silicon nanocones by bias-enhanced microwave plasma CVD”, Mater. Sci. Eng. B 137 (2007) 205-209.
[74] K. Y. Leea, S. I. Hondaa, M. Katayamaa, T. Kuzuokaa, Y. G. Baeka, S. Ohkuraa, K. Aokib, T. Hiraoc and K. Oura, “Synthesis of conical Si array on Si(100) for a field electron emitter by plasma-enhanced chemical vapor deposition”, Thin Solid Films 464-465 (2004) 194-198.
[75] S. Sharma, T. I. Kamins and R. S. Williams, “Diameter control of Ti-catalyzed silicon nanowires”, J. Cryst. Growth 267 (2004) 613-618.
[76] Z. Wu, J. Sun, Q. Lei, Y. Zhao, X. Geng and J. Xi, “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E 33 (2006) 12129.
[77] N. Imajyo, “High rate deposition of p c-Si with plasma gun CVD”, J. Non-Cryst. Solids 198-200 (1996) 935-939.
[78] Y. Sakumaa, H. Liua, H. Shiraia, Y. Moriyaa and H. Ueyamab, “Low
temperature formation of microcrystalline silicon films using high-density SiH microwave plasma”, Thin Solid Films 386 (2001) 261-266.
[79] U. K. Das, P. Chaudhuri, “Optical emission spectroscop ic study of a radio-frequency plasma of Ar-SiH4 ”, Chem. Phys. Lett. 298 (1998) 211-216.
[80] J. L. Andu´jar, E. Pascual, G. Viera and E. Bertran, “Optical emission spectroscopy of rf glow discharges of methane–silane mixtures”, Thin Solid Films 317 (1998) 120-123.
[81] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma and H. Shirai, “Optical
emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films 386 (2001) 256-260.
[82] V. Suendo and P. R. Cabarrocas, “Plasma diagnostics in silane-methane-
hydrogen plasmas under pm-Si1-xCx:H deposition conditions: Correlation with film properties”, J. Non-Cryst. Solids 352 (2006) 959-963.
[83] A. Matsuda and K. Tanaka, “Plasma spectroscopy-glow discharge deposition of hydrogenated amophous silicon”, Thin Solid Films 92 (1982) 171-187.
[84] B. G. Budaguan, A. A. Popov, A. Y. Sazonov, M. N. Bosyakov, D. I. Grunsky and D. W. Zhuk, “The application of low-frequency glow discharge to high-rate deposition of a-Si:H”, J. Non-Cryst. Solids 227-230 (1998) 39-42.
[85] N. Kosku and S. Miyazaki, “The application of very high frequency inductively coupled plasma to high-rate growth of microcrystalline silicon films”, J. Non-Cryst. Solids 352 (2006) 911-914.
[86] F. Liu, C. S. Ren, Y. N. Wang, X. L. Qi and T. C. Ma, “The optical emission spectroscopy study of an rf-plasma-enhanced magnetron sputtering system”, Vacuum 81 (2006) 221-225.
[87] 謝安和,「二氧化銥之氣體感測性質以及濺鍍金屬之影響」。台科大化學工程系碩士論文,民國94年,6月。
[88] V. Svorcik, J. Zehentner, V. Rybka, P. Slepicka and V. Hnatowicz, “Characterization of thin gold layers on polyethyleneterephthalate:transition
from discontinuous to continuous, homogenous layer” Appl. Phys. A 75 (2002) 541-544.
[89] 施任青,「以石英晶體微天秤法偵測金奈米標識之IgG時訊號之增強」。國立中山大學化學研究所碩士論文,民國92年,7月。

QR CODE