簡易檢索 / 詳目顯示

研究生: 張明煥
Ming-Huan Chang
論文名稱: 運用飛秒雷射形成內部及表面微結構之應用研究
Applications of femtosecond laser on internal and surface micro-structure processing
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 廖運炫
Yunn-Shiuan Liao
宋震國
Cheng-Kuo Sung
黃聖杰
Sheng-Jye Hwang
鄭逸琳
Yih-Lin Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 飛秒雷射內部微結構表面微結構
外文關鍵詞: femtosecond laser, internal micro-structure, surface micro-structure
相關次數: 點閱:425下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著創新產品開發朝向輕、薄、短、小之趨勢與光纖雷射技術成熟且高品質合理價格,造就超短脈衝雷射技術在精微加工之應用迅速發展。奈秒雷射加工受熱效應區(HAZ)影響,面臨加工精度不易控制,而飛秒雷射具低熱效應特性,為近年來積極開發之雷射加工技術。
    本研究係運用飛秒雷射於材料內部及表面形成微結構之應用,並聚焦在雷射聚焦深度、雷射功率、雷射加工速度、雷射脈衝頻率等參數之變化對加工之影響,以探討飛秒雷射應用之可行性。
    本研究發現雷射功率不高於被加工材料之分子鍵結能量及適當之雷射加工間距,飛秒雷射確可於壓克力透明材料內部形成微結構製作光學擴散片;運用飛秒雷射於金屬玻璃表面形成微溝槽及雷射誘發週期性表面微結構,可提升剪切帶啟動及增生,可避免局部化剪切帶形成,亦可阻卻局部化剪切移位,提升彎曲延展性近10%;此外,適當之雷射功率及加工速度,以飛秒雷射製作光柵之節距與設定之節距相當接近,顯示運用飛秒雷射確可製作光學尺之光柵達20µm。


    The innovative development towards light, thin, short and small products . and creates the rapid demand of micro-processing applications using ultrafast pulse laser technology. But nanosecond laser processing faces the bottleneck of controlling machining accuracy due to heat affected zone (HAZ). The characteristics of low HAZ make the femtosecond laser be a popular choice for micro-processing.
    In this study, the applications of femtosecond laser processed internal and surface micro-structure were studied. Effects of focus, laser power, laser processing speed, laser pulse width and other parameters were investigated. Feasibility of application of femtosecond laser was also discussed.
    It was found that if the laser power is not higher than the molecular bonding energy of the processed material and each laser processed is properly spaced, the femtosecond laser can process internal micro-structure well in transparent material to form an optical diffuser. In another case, the ductility of the laser processed metallic glass can increase nearly 10% with a micro-structure on the surface of metallic glass due to the shear zone growth and spacing reduction of shear band. In addition, optical encoder can be produced with femtosecond laser due its high accurate grating pitch. and 20µm grating pitch of encoder was successfully fabricated by femtosecond laser.

    第一章 導論 1.1 前言 1.2 研究目的與動機 1.3 論文架構 第二章 飛秒雷射特性與應用文獻回顧 2.1 雷射特性 2.2 雷射之發展 2.3 雷射加工光路系統 2.4 雷射微加工應用 2.5 飛秒雷射特性 2.6 飛秒雷射加工透明材料應用機制 2.6.1 材料改質應用機制 2.6.2 材料剝除應用機制 2.7 飛秒雷射加工透明材料應用文獻回顧 第三章 飛秒雷射於材料內部形成微結構在光學擴散應用 3.1 具內部微結構之光學擴散片 3.2 以飛秒雷射形成內部微結構 3.2.1 雷射光路設計 3.2.2 光能量強度量測 3.2.3 雷射加工參數 3.3 加工參數對內部微結構及光學擴散之影響 3.3.1 雷射功率 3.3.2 雷射聚焦深度 3.3.3 雷射加工間距 3.4 本章小結論 第四章 飛秒雷射於金屬玻璃表面形成微結構提升抗彎強度應用 4.1 金屬玻璃之特性及應用 4.2 飛秒雷射形成表面微結構 4.3 運用飛秒雷射提升金屬玻璃之抗彎強度 4.4 實驗設計與加工參數 4.5 表面微結構提升金屬玻璃之抗彎強度之機制 4.5.1 表面改質與塑性變形 4.5.2 剪切帶之啟動及增長 4.6 本章小結論 第五章 飛秒雷射直寫反射式光學尺之光柵應用 5.1 光柵與光學尺 5.2 光柵製作方法 5.3 以飛秒雷射直寫形成光柵 5.4 加工參數對形成光柵之影響 5.4.1 重複頻率1MHz 5.4.2 重複頻率0.5MHz、0.33MHz、0.25MHz 5.4.3 光柵之節距尺寸驗證 5.5 本章小結論 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向

    [1]D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-Harmonic Generation of Light by Focused Laser Beams” , Physics Review, Vol. 145, pp. 338-379 (1996)
    [2]Lily Zheng, Third-Harmonic Generation of Intense Laser Pulses, Doctoral dissertation of University of Rochester, (1996)
    [3]范祐維,短波長摻鐿光纖雷射及其倍頻之研究,國立臺灣大學光電工程學研究所碩士論文,(2010)
    [4]黃國維,摻鐿釔鋁石榴石自鎖模雷射,國立交通大學電子物理研究所碩士論文,(2012)
    [5]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene” , Optics Express, Vol. 17, No. 20, pp. 17630-17635 (2009)
    [6]C.B. Schaffer, A. Brodeur, J.F. Garcia and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Optics Letters , Vol. 26, pp. 93-95 (2001)
    [7]S. Dhar, N. Saini, and R. Purohit, “A review on laser drilling and its Techniques”, Proceedings of the International Conference of Advances Advances in Mechanical Engineering-2006 (AME 2006), (2006)
    [8]H. J. Booth, “Recent applications of pulsed lasers in advanced materials processing”, Thin Solid Films, Vol. 453-454, pp. 450-457 (2004)
    [9]R. S. Patel, D. Clark, and J. Bovatsek, “Laser scribing: a key enabling technology for manufacturing of low cost thin film photovoltaic cells”, ICALEO 2007 Congress Proceedings, (2007)
    [10]J. Stollhof, S. Weiler, C. Tan, I. Zawischa, D.H. Sutter, J. Kleinbauer, and M. Kumkar, “Customized short and ultrashort laser pulses for the photovoltaics industry”, ICALEO 2007 Congress Proceedings, (2007)
    [11]T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses”, Applied Physics Letters, Vol. 73, pp. 1673-1675, (1998)
    [12]T. Sarnet, M. Halbwax, R. Torres, P. Delaporte, M. Sentis, S. Martinuzzi, V. Vervisch, F. Torregrosa, H. Etienne, L. Roux, and S. Bastide, “Femtosecond laser for black silicon and photovoltaic cells”, Proceedings of the SPIE, Vol. 6881, (2008)
    [13]A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals”, Journal of Applied Physics, Vol. 103, 043513, pp. 1-3, (2008)
    [14]A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses”, Journal of Applied Physics, Vol. 117, 033103, pp. 1-5, (2015)
    [15]Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching”, Optics Express, Vol. 12, No. 10, pp. 2120-2129, (2004)
    [16]M. Horstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching”, Journal of Laser Micro Nanoengineering, Vol. 5, No. 2, pp. 145-149, (2010)
    [17]R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides”, Applied Physics a-Materials Science & Processing, Vol. 93, No. 1, pp. 17-26, (2008)
    [18]R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials”, Nat. Photon, Vol. 2, No. 4, pp. 219-225, (2008)
    [19]D. Hélie and R. Vallée, “Micromachining of thin glass plates with a femtosecond laser”, Proceedings of the SPIE 7386, 738639, (2009)
    [20]Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50nm feature sizes”, Opt. Lett., Vol. 38, No. 2, pp. 187-189, (2013)
    [21]M. Hirano, K. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse”, Applied Surface Science, Vol. 197, pp. 688-698, (2002)
    [22]A. Vredenborg, W. G. Roeterdink, C. A. de Lange, and M. H. M. Janssen, “Revealing femtosecond multiphoton induced multichannel molecular ionization and fragmentation dynamics by photoelectron–photoion coincidence imaging”, Chemical Physics Letters, Vol. 478, pp. 20-27 (2009)
    [23]L. Lucas and J. Zhang, “Femtosecond laser micromachining: A back-to-basics primer”, Industrial Laser Solutions, (2012)
    [24]P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm”,Optics Communications, Vol. 114, pp. 106-110 (1995)
    [25]B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids”,Applied Physics A, Vol. 63, pp. 109-115 (1996)
    [26]L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics”, Journal of Physics D: Applied Physics, Vol. 37, No. 10, pp. 1492-1496 (2004)
    [27]L. Jiang, and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 487-499 (2005)
    [28]L. Jiang, and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films”, ASME Journal of Heat Transfer, Vol. 127, pp. 1167-1173 (2005)
    [29]J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two temperature model for ultrafast laser heating”, International Journal of Heat and Mass Transfer, Vol. 49, pp. 307-316 (2006)
    [30]B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics”, Physical Review B, Vol. 35, No. 4, pp. 1749-1761 (1996)
    [31]K. Miura, Jianrong Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser”, Applied Physics Letters, Vol. 71, pp. 3329-3331 (1997)
    [32]L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses”, Optics Communications,Vol. 171, pp. 279-284 (1999)
    [33]E. N. Glezer, and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials”, Applied Physics Letters,Vol. 71, pp. 882-884 (1997)
    [34]S. Vukelic, B. Gao, S. Ryu, and Y. L. Yao, “Structural modification of amorphous fused silica under femtosecond laser irradiation”, Proceedings of the 2008 International Manufacturing Science and Engineering Conference, pp. 1-10 (2008)
    [35]J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses”, Applied Physics A, Vol. 76, pp. 367-372 (2003)
    [36]Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses”, Optics Express, Vol. 16, No. 24, 19520-19534 (2008)
    [37]Horiba Jibin Yvon, “Raman analysis of laser-processed glass materials”, Raman Application Note.
    [38]M. Grehn, T. Seuthe, W. J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses”, Optical Materials Express, Vol. 3, No. 12, pp. 2032-2040 (2013)
    [39]E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials”, Optics Letters, Vol. 21, No. 24, pp. 2023-2015 (1996)
    [40]W. Watanabe, T. Tamaki and K. Itoh, “Femtosecond Laser Micromachining and Biological Therapy”, Nonlinear Optics and Spectroscopy, Vol. 18, No. 3, pp. 263-269 (2008)
    [41]I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass”, Physics Procedia 5, pp. 483-493 (2010)
    [42]D. Hélie, F. Lacroix and R. Vallée, “Reinforcing a Direct Bond between Optical Materials by Filamentation Based Femtosecond Laser Welding”, JLMN-Journal of Laser Micro/Nanoengineering, Vol. 7, No. 3, (2012)
    [43]P. Kongsuwan, G. Satoh, and Y. L. Yao, “Transmission welding of glass by femtosecond Laser: Mechanism and Fracture Strength”, Journal of Manufacturing Science and Engineering, Vol. 134, pp. 011004-1 (2012)
    [44]W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses”, Proceedings of the SPIE, Vol. 6460, 646017-1, (2007)
    [45]P. Rudolph , J. Bonse , J. Krüger , and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass”, Applied Physics A: Materials Science & Processing, Vol. 69, pp. 763-766 (1999)
    [46]I. V. Hertel, R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. B. Campbell, “Surface and bulk ultra-short pulsed laser processing of transparent materials”, LPM2000, pp. 1-8 (2000)
    [47]N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics”, Applied Physics A: Materials Science & Processing, Vol. 94, No. 4, pp. 889-897 (2009)
    [48]G. Mann and H. Weber, “Measurement of Nonlinear Absorption Coefficients of KTP Crystals in the Green Spectral Range”, Laser Physics, Vol. 9, No. 1, pp. 426–429 (1999)
    [49]D. Milam and M. J. Weber, “Measurement of nonlinear refractive index coefficients using time resolved interferometry: Application to optical materials for high power neodymium”, Journal of Applied Physics, Vol. 47, No.6, pp. 2497-2501 (1976)
    [50]E. L. Falcão-Filho, Cid B. de Araújo, C. A. C. Bosco, G. S. Maciel, and L. H. Acioli, “Antimony orthophosphate glasses with large nonlinear refractive indices low two-photon absorption coefficients, and ultrafast response”, Journal of Applied Physics,Vol. 97, pp. 013505-1 (2005)
    [51]S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort Pulse Laser Ablation of Polycarbonate and Polymethylmethacrylate”, Applied Surface Science,Vol. 154, pp. 555-560 (2000)
    [52]J. Bonse, S. Baudach, J. Krueger, and W. Kautek, “Femtosecond Laser Micromachining of Technical Materials”, Proceedings of the SPIE, pp. 161-172 (2000)
    [53]Y. Ito, S. Kiyoku, T. Ogura, and N. Mohri, “Dynamical Observation of Laser-induced Damages Made in Inside of Transparent Materials”, Proceedings of the SPIE, pp. 62-65 (2002)
    [54]K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical Waveguide Fabrication in New Glasses and PMMA with Temporally Tailored Ultrashort Laser”, Proceedings of the SPIE, pp. 172-178 (2004)
    [55]Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D micro optical lenses in photosensitive glass using femtosecond laser micromachining”, Applied Physics A: Materials Science & Processing, Vol. A85, pp. 11-14 (2006)
    [56]C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing”, Applied Physics A: Materials Science & Processing, Vol. 91, No. 4, pp. 751-757 (2009)
    [57]C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry–Perot interferometer embedded in a glass chip fabricated by femtosecond laser”, Optics Letters, Vol. 34, No. 16, (2009)
    [58]C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser ”, Optics Letters, Vol. 35, No. 17, (2010)
    [59]Y. Han, Z. Liang, H. Sun, H. Xiao, and H. L. Tsai, “Nanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering”, Applied Physics A: Materials Science & Processing, Vol. 102, No. 2, pp. 415-419 (2011)
    [60]C. H. Lin, L. Jiang, J. Zhou, H. Xiao, S. J. Chen, and H. L. Tsai, “Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering”, Optics Letters, Vol. 35, No. 7, (2010)
    [61]H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface structured by the ablation of LIBWE method”, Applied Physics A: Materials Science & Processing, Vol. 79, No. 4-6, pp. 827-828 (2004)
    [62]J. Kim, “Replication of microchannel structures in polymers using laser fabricated glass–ceramic stamp”, Optics and Lasers in Engineering, Vol. 45, pp. 890-897 (2007)
    [63]K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser”, Optics Letters, Vol. 21, No. 2, pp. 1729-1731 (1996)
    [64]C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials using tightly-focused femtosecond laser pulses”, Measurement Science and Technology, Vol. 12, (2001)
    [65]M. Hirano, K. Kawamura and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse”, Applied Surface Science, Vol. 197-198, pp. 688-698 (2002)
    [66]M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage”, Applied Physics A, Vol. 79, pp. 791-794 (2004)
    [67]Y. Li, W. Watanabe, K. Itoh, and X. Sun, “Holographic data storage on nonphotosensitive glass with a single”, Applied Physics Letters, Vol. 81, No. 11, pp. 1952-1954 (2002)
    [68]S. Kawata, H. B. Sun, T. Tanaka1, and K. Takada1, “Finer features for functional microdevices”, Nature, Vol. 412, pp. 697-698 (2001)
    [69]W. Zhang, L. H. Han, and S. Chen, “Integrated two-photon polymerization with nano imprinting for direct digital nanomanufacturing”, Vol. 132, pp. 030907-1 (2010)
    [70]M. Zhou, H. F. Yang, B. J. Li, J. Dai, J. K. Di, E. L. Zhao, and L. Cai, “Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser”, Applied Physics A: Materials Science & Processin, Vol. 94, pp. 571-576 (2009)
    [71]J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color Center Formation in Soda-Lime Glass with Femtosecond Laser Pulses”, Journal of Applied Physics,Vol. 94, No. 7, pp. 4332-4340 (2003)
    [72]Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-Loss Waveguides Written with a Femtosecond Laser for Flexible Interconnection in a Planar Light-Wave Circuit”, Optics Letters,Vol. 30, No. 7, pp. 723-725 (2005)
    [73]R. R. Gattass and E. Mazur, “Femtosecond Laser Micromachining in Transparent Materials”, Nature Photonics, Vol. 2, No. 4, pp. 219-225 (2008)
    [74]R. S. Taylor, E. Simova, and C. Hnatovsky, “Creation of Chiral Structures Inside Fused Silica Glass”, Optics Letters, Vol. 33, No. 12, pp. 1312-1314 (2008)
    [75]J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond Laser Written Embedded Diffractive Optical Elements and Their Applications”, Frontiers in UltrafastOptics: Biomedical, Scientific, and Industrial Applications X, 7589, (2010)
    [76]H. P. Kuo, M. Y. Chuang, and C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit”, Powder Technology, 192(1): pp. 116-121 (2009)
    [77]G. Kim, and J. Park, “ A PMMA optical diffuser fabricated using an electrospray method ”, Applied Physics A, 86(3): pp. 347-351 (2007)
    [78]G. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU)”, European polymer journal, 41(8): pp. 1729-1737 (2005)
    [79]G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, “Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units”, Displays, 26(1): pp. 37-43 (2005)
    [80]S. I. Kim, Y. S. C., Y. N. Ham, C. Y. Park, and J. Kim, “ Holographic diffuser by use of a silver halide sensitized gelatin process ”, Applied Optics, 42: pp. 2482-2491 (2003)
    [81]T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding”, Microelectronic Engineering, 83(11–12): pp. 2499-2503 (2006)
    [82]E. E. García-Guerrero, E. R. Méndez, H. M. Escamilla, T. A. Leskova, and A. A. Maradudin, “Design and fabrication of random phase diffusers for extending the depth of focus”, Optics Express, 15(3): pp. 910-923 (2007)
    [83]E. R. Méndez, E. E. García-Guerrero, H. M. Escamilla, A. A. Maradudin, T. A. Leskova , and A. V. Shchegrov , “Photofabrication of Random Achromatic Optical Diffusers for Uniform Illumination”, Applied Optics, 40(7): pp. 1098-1108 (2001)
    [84]S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system”, Optics Letters, 31(20): pp. 3016-3018 (2006)
    [85]D. Sakai, K. Harada, S. I. Kamemaru, M. E. Morsy, M. Itoh, and T. Yatagai, “Direct Fabrication of Surface Relief Holographic Diffusers in Azobenzene Polymer Films ”, Optical Review, 12(5): pp. 383-386 (2005)
    [86]M. Parikka, T. Kaikuranta, P. Laakkonen,J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, and J. Turunen, “Deterministic Diffractive Diffusers for Displays”, Applied Optics, 40(14): pp. 2239-2246 (2001)
    [87]Ming-Huan Chang, Wan-Ling Chiou, Tri Sarjono, and Jeng-Ywan Jeng, “Fabrication of Internal Optical Diffuser in PMMA Using Femtosecond Laser”, Journal of the Chinese Society of Mechanical Engineers, Vol.36, No.3, pp. 241-247 (2015)
    [88]Y. Ito, S. Kiyoku, T. Ogura, and N. Mohri, “Dynamical Observation of Laser-induced Damages Made in Inside of Transparent Materials”, Proceedings of the SPIE. pp. 62-65 (2002)
    [89]邱婉玲,飛秒雷射加工創新研究-內部結構型擴散片與矽晶圓裂片應用,國立台灣科技大學機械工程系研究所碩士論文 (2010)
    [90]A. Inoue, Acta Materialia , 48, pp. 279-306 (2000)
    [91]J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, and P. K. Liaw, Thin Solid Films, 520, pp. 5097-5122 (2012)
    [92]C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, Acta Materialia, 55, pp.4067-4109 (2007)
    [93]M. Groenendijk, “Fabrication of super hydrophobic surfaces by fs laser pulses: How to produce self-cleaning surfaces”, Laser Technik Journal, Vol. 5, No 3, pp. 44-47 (2008)
    [94]T. Baldacchini, J.E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser”, Langmuir, Vol. 22, No. 11, pp. 4917-4919 (2006)
    [95]Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation”, Applied Physics Letters, Vol. 95, 111110, pp. 1-3 (2009)
    [96]P. Bizi-bandoki, S. Valette, E. Audouard, and S. Benayoun, “Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations”, Applied Surface Science, Vol. 273, pp. 399-407 (2013)
    [97]B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures”, Progress in Photovoltaics: Research and Applications, Vol. 19, No. 6, pp. 631-639 (2011)
    [98]Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector”, Applied Physics Letters, Vol. 89, 033506, pp. 1-3 (2006)
    [99]G. Ryka, Y. Kligermanb, and I. Etsion, “Experimental investigation of laser surface texturing for reciprocating automotive components”, Tribology Transactions, Volume 45, pp. 444-449 (2002)
    [100]G. Ryk, Y. Kligerman, I. Etsion, and A. Shinkarenko, “Experimental investigation of partial laser surface texturing for piston-ring friction reduction”, Tribology Transactions, Vol. 48, pp. 583-588 (2005)
    [101]K. Kawahara, H. Sawada, and A. Mori, “Effect of surface periodic structures for bi-directional rotation on water lubrication properties of SiC”, Tribology Online, Vol. 3, pp. 122-126 (2007)
    [102]T. Enomotoa and T. Sugihara, “Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism”, Procedia Engineering, Vol. 19, pp. 100 -105 (2011)
    [103]J. Noh, J. Lee, D. Shin, H. Sohn, J. Suh, and J. Oh, “Four-beam Interference Optical System for Laser Micro-structuring Using Picosecond Laser”, Journal of the Optical Society of Korea, Vol. 13, No. 1, pp. 75-79 (2009)
    [104]M. Lei and B. Yao, “Structuring by multi-beam interference using symmetric pyramids”, Optics Express, Vol. 14, No. 12, pp. 5803-5811 (2006)
    [105]J. Huang, S. Beckemper, A. Gillner, and K. Wang, “Tunable surface texturing by polarization-controlled three-beam interference”, Journal of micromechanics and microengineering, Vol. 20, No.9, 095004, pp. 6-9 (2010)
    [106]M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation”, Journal of Laser Applications, Vol. 18, pp. 227-232 (2006)
    [107]K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition”, Current Opinion in Solid State and Materials Science, Vol. 11, pp. 76-85 (2007)
    [108]S. Scudino, B. Jerliu, K. B. Surreddi, U. Kühn, and J. Eckert, Journal of Alloys and Compounds, 509, pp. 128-130 (2011)
    [109]Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Scripta Materialia, 62, pp. 278-281 (2010)
    [110]M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, Scripta Materialia, 62, pp. 678-681 (2010)
    [111]J. S. C. Jang, Y. S. Chang, T. H. Li, P. J. Hsieh, J. C. Huang, and C. Y. A. Tsao, Journal of Alloys and Compounds, 504, pp. 102-105 (2010)
    [112]Q. P. Cao, J. W. Liu, K. J. Yang, F. Xu, Z. Q. Yao, A. Minkow, H. J. Fecht, J. Ivanisenko, L. Y. Chen, X .D. Wang, S. X. Qu, and J. Z. Jiang, Acta Materialia, 58, pp. 1276-1292 (2010)
    [113]J. S. C. Jang, J. Y. Ciou , T. H. Hung, J. C. Huang, and X. H. Du, Applied Physics Letters, 92, (2008).
    [114]D. G. Pan, H. F. Zhang, A. M. Wang, and Z. Q. Hu, Applied Physics Letters, 89, (2006).
    [115]Y. K. Xu, H. Ma, J. Xu, and E. Ma, Acta Materialia, 53, pp. 1857-1866 (2005)
    [116]Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, and A. Inoue, Materials Transactions, pp. 42623-632 (2001)
    [117]Q. Zheng, D. Chen, L. K. Zhang, X. Y. Zhao, and A. L. Zhang, Materials Science and Engineering A, 592, pp. 64-69 (2014)
    [118]R. T. Qu, Q. S. Zhang, and Z. F. Zhang, Scripta Materialia, 68, pp. 845-848 (2013)
    [119]G. Wu, R. Li, Z. Liu, B. Chen, Y. Li, Y. Cai, and T. Zhang, Intermetallics, 24, pp. 50-55 (2012)
    [120]J. P. Chu, J. E. Greene, J. S. C. Jang, J. C. Huang, Y. L. Shen, P. K. Liaw, Y. Yokoyama, A. Inoue, and T. G. Nieh, Acta Materialia, 60, pp. 3226-3238 (2012)
    [121]W. Chen, K. C. Chan, S. H. Chen, S. F. Guo, W. H. Li, and G. Wang, Materials Science and Engineering A, 552, pp. 199-203 (2012)
    [122]B. Chen, Y. Li, M. Yi, R. Li, S. Pang, H. Wang, and T. Zhang, Scripta Materialia, 66, pp. 1057-1060 (2012)
    [123]W. Chen, K. C. Chan, P. Yu, and G. Wang, Materials Science and Engineering A, 528, pp. 2988-2994 (2011)
    [124]B. Chen, S. Pang, P. Han, Y. Li, A. R. Yavari, G. Vaughan, and T. Zhang, Journal of Alloys and Compounds, 504, pp. 45-47 (2010)
    [125]Y. Zhang, W. H. Wang, and A. L. Greer, Nature Materials, 5, pp. 857-860 (2006)
    [126]T.G. Nieh, Y. Yang, J. Lu, C.T. Liu, Progress in Natural Science: Materials International,22 (2012) 355-363.
    [127]Chia-Chi Yu, Jinn P. Chu, Cheng-Min Lee, Wahyu Diyatmika , M. H. Chang, Jeng-Ywan Jeng, and Yoshihiko Yokoyama, “Bending property enhancements ofZr55Cu30Al10Ni5 bulk metallic glass: Effects of various surface modifications”, Materials Science & Engineering A, 633, pp. 69-75 (2015)
    [128]V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers”, Opt. Lett., Vol. 18, pp. 1089-1091 (1993)
    [129]T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion”, Appl. Opt., Vol. 32, pp. 1888-1900 (1993)
    [130]A. Yariv, and M. Nakamura, “Periodic structures for integrated optics”, IEEE J. Quantum Electron. QE-13, pp. 233-253 (1977)
    [131]林孟駿,飛秒雷射製作鍍鉻玻璃光柵,國立台灣科技大學機械工程系研究所碩士論文 (2015)
    [132]Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, “Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser”, Optics Express, 11(15), pp. 1809-1816 (2003)
    [133]P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm”, Optics Communications, 114, pp. 106-110 (1995)
    [134]B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids”, Applied Physics A, 63, pp. 109-115 (1996)
    [135]Meng-Jyun Lin, Ming-Huan Chang, Jeng-Ywan Jeng, “Fabrication of Optical Gratings on Chrome Coated Glass Using a Femtosecond Laser”, Journal of the Chinese Institute of Engineers, (2016)
    [136]S. C. Chen, Y. C. Lin , J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system”, Microsystem Technology, Vol. 13, pp. 465-474 (2007)
    [137]D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, “Diffractive Optics: Design Fabrication and Test”, SPIE, Vol. TT62, pp. 260-267 (2003)
    [138]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint Lithography”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 14, No. 6, pp. 4129-4936 (1996)
    [139]C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, R. Pelzer, “Characterization of 8-in. Wafers Printed by Nanoimprint Lithography”, Microelectronic Engineering, Vol. 73-74, pp. 172-177 (2004)

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE