簡易檢索 / 詳目顯示

研究生: 徐顥澄
Hao-Cheng Hsu
論文名稱: 可吸收鎂合金動靜脈廔管支架開發
Development of absorbable magnesium alloy arteriovenous fistula stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鄧秉敦
Ping-Tun Teng
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 120
中文關鍵詞: 動靜脈廔管支架鎂鋁合金AZ31支架塗層支架飛秒雷射浸塗法
外文關鍵詞: arteriovenous fistula (AVF), magnesium alloy stent, stent coating, femtosecond laser, dip-coating
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 末期腎臟病患者(End Stage Renal Disease)在進行血液透析前須先建立血液透析管路,而在建立血液透析管路方式中,以透過手術將自體動脈與靜脈進行橋接的自體動靜脈廔管(Arteriovenous Fistula,AVF)為最優先的選項,因其可使用的時間最長,且後續併發症最少。但是動靜脈廔管在前期靜脈成熟化階段常因靜脈直徑及血流量不足,導致廔管成熟化失敗。本研究設計之廔管支架,是應用於橋接手術時直接放置進入靜脈,擴張此靜脈至適當直徑以有效增加血流量,提高前期動靜脈廔管成熟化機率。
    本研究先以ANSYS模擬輔助鎂鋁合金AZ31支架的開發,設計出可以壓縮至2 mm (6 French)以下直徑,並可以氣球擴張至外徑5.4 mm的支架,本研究並以模擬及實驗探討支架在壓縮、擴張後的殘留應力大小,與柔順性及支架擴張後彎曲的表現。最後,此款支架利用飛秒雷射切割完成後,並搭配後處理與浸塗製程,製作出具高分子塗層的AZ31支架。此塗層支架得以改善鎂鋁合金快速降解的缺點,本研究並以控制塗層厚度達到AVF支架所需的28天以上降解天數目標。


    Before Hemodialysis, end stage renal disease (ESRD) patients need to establish a dialysis access channel. In the types of dialysis access surgery, the arteriovenous fistula (AVF) that bridges the autogenous artery and vein is preferred and widely used. AVF is the best choice of the dialysis access because it generally lasts longer and has fewer problems. However, venous maturation is a critical issue about AVF use, due to insufficient vein diameter and blood flow. Therefore, a special magnesium alloy stent which can be implanted directly into the vein during the AVF operation is designed in this study. The vessel diameter and blood flow rate could be increased significantly, and improve the maturation rate of the AVF operation.
    In this study ANSYS simulation is used to assist the development of magnesium alloy AZ31 stents, and design a stent prototype that can be compressed to an outer diameter of 2mm (6 French) and expanded to 5.4mm. The study also discusses the residual stress of the stent after compression and expansion, and the flexibility and bending performance of the stent after expansion, theoretically and experimentally. Finally, femtosecond laser cutting, combined with post-processing and dip-coating, are used to fabricate the AZ31 alloy stent and the stent’s polymeric coating, which can improve the rapid degradation shortcomings of magnesium-aluminum alloy. To reach the stent requirement for assisting AVF maturation, the degradation tests are performed more than 28 days for deciding the stent’s coating material and thickness.

    摘要 Abstract I 誌謝 III 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 第二章、 文獻回顧 4 2.1. 動靜脈廔管 4 2.1.1. 自體動靜脈廔管手術 4 2.1.2. AVF成熟化成功關鍵 5 2.2. 生物可降解支架 9 2.2.1. 高分子材料 9 2.2.2. 金屬材料 10 2.2.3. 市售鎂鋁合金支架 11 2.3. 支架塗層 12 第三章、 實驗流程 13 3.1. 支架設計與建立模擬模型 15 3.1.1. 支架設計構想與繪製 17 3.1.2. 建立有限元素模型 20 3.1.3. 材料性質設定 21 3.1.4. 接觸條件設定 23 3.1.5. 邊界條件設定 24 3.1.6. 網格大小與收斂性分析 29 3.2. 支架製造 31 3.2.1. 飛秒雷射加工 31 3.2.2. 雷射切割路徑規劃 32 3.2.3. 化學蝕刻 34 3.3. 實驗驗證 36 3.3.1. 支架壓縮 36 3.3.2. 氣球擴張 37 3.3.3. 徑向力量測 38 3.3.4. 支架彎曲測試 38 3.4. 塗層支架 39 3.4.1. 材料選用 41 3.4.2. Dip-coating製程 42 3.4.3. 塗層厚度量測及選定 43 3.4.4. 支架降解測試 44 3.5. 使用設備與儀器 45 3.5.1. 飛秒雷射機台 45 3.5.2. 光學顯微鏡(Optical microscope,OM) 46 3.5.3. 壓縮裝置(Crimping Device) 47 3.5.4. 掃描式電子顯微鏡 47 3.5.5. 磁石加熱攪拌器 48 第四章、 實驗結果 49 4.1. 支架設計與模擬 49 4.1.1. 支架壓縮模擬 49 4.1.2. 支架擴張模擬 52 4.1.3. 支架徑向力測試模擬 55 4.1.4. 支架柔順性模擬 58 4.1.5. 支架彎曲測試模擬 60 4.2. 支架製造 63 4.2.1. 飛秒雷射加工後的支架形貌 63 4.2.2. 化學蝕刻 63 4.1. 模擬模型驗證 67 4.1.1. 支架壓縮實驗與Recoil測試 67 4.1.2. 支架擴張實驗與Recoil測試 69 4.1.3. 徑向力測試實驗 71 4.1.4. 支架柔順性測試 73 4.1.5. 支架抗彎強度測試實驗 74 4.2. 塗層支架 76 4.2.1. 無塗層AZ31支架降解實驗 76 4.2.2. 塗層材料選用 82 4.2.3. 塗層厚度控制與量測 85 4.2.4. 不同塗層厚度的降解結果 87 4.2.5. PLA塗層AZ31合金支架降解實驗 89 第五章、 結論與未來展望 93 5.1. 結論 93 5.1.1. 支架幾何設計比較 93 5.1.2. 模擬與實驗驗證 93 5.1.3. AZ31支架降解控制 94 5.2. 未來展望 94 參考文獻 96

    [1] 顏正杰, et al., 血液透析患者周邊血管疾病之治療. 2016. 28(4): p. 189-193.
    [2] 余法昌, 下肢動脈阻塞性疾病. 2013. 9(3): p. 21-24.
    [3] Lok, C.E. and R.J.C.J.o.t.A.S.o.N. Foley, Vascular access morbidity and mortality: trends of the last decade. Clinical Journal of the American Society of Nephrology, 2013. 8(7): p. 1213-1219.
    [4] Dhingra, R.K., et al., Type of vascular access and mortality in US hemodialysis patients. Kidney International, 2001. 60(4): p. 1443-1451.
    [5] Perera, G.B., et al., Superiority of autogenous arteriovenous hemodialysis access: maintenance of function with fewer secondary interventions. Annals of Vascular Surgery, 2004. 18(1): p. 66-73.
    [6] Lok, C.E., et al., Cumulative patency of contemporary fistulas versus grafts (2000–2010). Clinical Journal of the American Society of Nephrology, 2013. 8(5): p. 810-818.
    [7] Sequeira, A., et al., Vascular Access Guidelines: Summary, Rationale, and Controversies. Techniques in Vascular and Interventional Radiology, 2017. 20(1): p. 2-8.
    [8] Besarab, A.J.J.o.t.A.S.o.N., Resolved: Fistulas are preferred to grafts as initial vascular access for dialysis. Journal of the American Society of Nephrology, 2008. 19(9): p. 1629-1633.
    [9] Dixon, B.J.K.i., Why don't fistulas mature? Kidney International, 2006. 70(8): p. 1413-1422.
    [10] Aalami, O., M. Majeed, and N.K.J.J.o.V.S. Itoga, PC108 Evaluation of an ePTFE Endograft Placed at the Time of Arteriovenous Fistula Creation to Prevent Juxta-anastomotic Stenosis and Improve Maturation and Long-Term Patency Rates. Journal of Vascular Surgery, 2017. 65(6): p. 167S-168S.
    [11] Yevzlin, A. and A.J.C.J.o.t.A.S.o.N. Asif, Stent placement in hemodialysis access: historical lessons, the state of the art and future directions. Clinical Journal of the American Society of Nephrology, 2009. 4(5): p. 996-1008.
    [12] Jones, R.G., et al., Long-term results of stent-graft placement to treat central venous stenosis and occlusion in hemodialysis patients with arteriovenous fistulas. Journal of Vascular and Interventional Radiology, 2011. 22(9): p. 1240-1245.
    [13] Navuluri, R. and S. Regalado. The KDOQI 2006 vascular access update and fistula first program synopsis. in Seminars in interventional radiology. 2009. Thieme Medical Publishers.
    [14] Kolakowski Jr, S., M.J. Dougherty, and K.D.J.J.o.v.s. Calligaro, Salvaging prosthetic dialysis fistulas with stents: forearm versus upper arm grafts. Journal of Vascular Surgery, 2003. 38(4): p. 719-723.
    [15] Polanec, B., et al., A review of production technologies and materials for manufacturing of cardiovascular stents. Advances in Production Engineering & Management, 2020. 15(4).
    [16] Quencer, K.B. and M.J.A.J.o.R. Arici, Arteriovenous fistulas and their characteristic sites of stenosis. American Journal of Roentgenology, 2015. 205(4): p. 726-734.
    [17] Tordoir, J.H.M., Vascular Access for Dialytic Therapies. Abdominal Key, 2016.
    [18] Manne, V., et al., Can pre and postoperative vein diameter and postoperative flow velocities influence the patency of vascular access in hemodialysis patients? Indian Journal of Vascular and Endovascular Surgery, 2018. 5(3): p. 145-145.
    [19] Wong, V., et al., Factors associated with early failure of arteriovenous fistulae for haemodialysis access. European Journal of Vascular and Endovascular Surgery, 1996. 12(2): p. 207-213.
    [20] Silva Jr, M.B., et al., A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. Journal of Vascular Surgery, 1998. 27(2): p. 302-308.
    [21] Miller, C.D., M.L. Robbin, and M.J.K.i. Allon, Gender differences in outcomes of arteriovenous fistulas in hemodialysis patients. Kidney International, 2003. 63(1): p. 346-352.
    [22] Robbin, M.L., et al., US vascular mapping before hemodialysis access placement. Radiology, 2000. 217(1): p. 83-88.
    [23] DeVita, M.V. and H.J.K.I.R. Shivarov, Novel Approaches to Arteriovenous Access Creation, Maturation, Suitability, and Durability for Dialysis. Kidney International Reports, 2020. 5(6): p. 769-778.
    [24] Konner, K., B. Nonnast-Daniel, and E.J.J.o.t.A.S.o.N.J. Ritz, The Arteriovenous Fistula. Journal of the American Society of Nephrology, 2003. 14(6): p. 1669-1680.
    [25] Chang, C.-J., et al., Highly increased cell proliferation activity in the restenotic hemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. American Journal of Kidney Diseases, 2004. 43(1): p. 74-84.
    [26] Roy-Chaudhury, P., V.P. Sukhatme, and A.K.J.J.o.t.A.S.o.N. Cheung, Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. Journal of the American Society of Nephrology, 2006. 17(4): p. 1112-1127.
    [27] Nikam, M., et al., Prospective controlled pilot study of arteriovenous fistula placement using the novel Optiflow device. Journal of Vascular Surgery, 2015. 61(4): p. 1020-1025.
    [28] Chemla, E., et al., Arteriovenous Fistula Creation Using the Optiflow™ Vascular Anastomotic Connector: The Open (O ptiflow P at E ncy and Maturatio N) Study. The Journal of Vascular Access, 2014. 15(1): p. 38-44.
    [29] Galyfos, G., et al., Bioabsorbable stenting in peripheral artery disease. Cardiovascular Revascularization Medicine, 2015. 16(8): p. 480-483.
    [30] Haelst, S.T.W.v., et al., Current status and future perspectives of bioresorbable stents in peripheral arterial disease. Journal of Vascular Surgery, 2016. 64(4): p. 1151-1159.
    [31] Zhu, Y., et al., The current status of biodegradable stent to treat benign luminal disease. Materials Today, 2017. 20(9): p. 516-529.
    [32] Pauck, R.G. and B.D. Reddy, Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med Eng Phys, 2015. 37(1): p. 7-12.
    [33] Hu, T., et al., Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. Materials Science and Engineering: C, 2018. 91: p. 163-178.
    [34] Soares, J.S. and J.E.J.A.o.b.e. Moore, Biomechanical challenges to polymeric biodegradable stents. Annals of Biomedical Engineering, 2016. 44(2): p. 560-579.
    [35] Wang, M., et al., Synthesis and characterization of PLLA–PLCA–PEG multiblock copolymers and their applications in modifying PLLA porous scaffolds. European Polymer Journal, 2007. 43(11): p. 4683-4694.
    [36] Kwon, D.Y., et al., Biodegradable stent. 2012.
    [37] Xia, N., et al., Inserting polyoxomolybdate cluster into poly (ɛ-caprolactone) to create a class of new heteropolymer: Synthesis and supramolecular structures. Polymer, 2011. 52(8): p. 1772-1780.
    [38] Lafont, A., et al., PLA stereocopolymers as sources of bioresorbable stents: Preliminary investigation in rabbit. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2006. 77(2): p. 349-356.
    [39] Lillard, R., et al., Influence of preoxidation on the corrosion of steels in liquid lead-bismuth eutectic. Corrosion, 2004. 60(11): p. 1031-1044.
    [40] Pierson, D., et al., A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(1): p. 58-67.
    [41] Song, G.L. and A.J.A.e.m. Atrens, Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999. 1(1): p. 11-33.
    [42] Bowen, P.K., et al., Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium. Journal of Biomedical Materials Research Part A, 2015. 103(1): p. 341-349.
    [43] Bowen, P.K., J. Drelich, and J.J.A.m. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 2013. 25(18): p. 2577-2582.
    [44] Bowen, P.K., et al., Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn‐Alloys. Advanced Healthcare Materials, 2016. 5(10): p. 1121-1140.
    [45] Kumar, K., R. Gill, and U.J.M.t. Batra, Challenges and opportunities for biodegradable magnesium alloy implants. Materials Technology, 2018. 33(2): p. 153-172.
    [46] Erbel, R., et al., Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet, 2007. 369(9576): p. 1869-1875.
    [47] Wiebe, J., H.M. Nef, and C.W.J.J.o.t.A.C.o.C. Hamm, Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 2014. 64(23): p. 2541-2551.
    [48] Bouchi, Y.H., B.D.J.G.C.S. Gogas, and Practice, Biocorrodible metals for coronary revascularization: Lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II. Global Cardiology Science and Practice, 2016. 2015(5): p. 63.
    [49] Song, G., et al., Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science, 1998. 40(10): p. 1769-1791.
    [50] Hornberger, H., S. Virtanen, and A.J.A.b. Boccaccini, Biomedical Coatings on Magnesium Alloys-A Review. Acta Biomaterialia, 2012. 8(7): p. 2442-2455.
    [51] Birbilis, N., M.X. Zhang, and Y. Estrin. Surface grain size effects on the corrosion of magnesium. in Key Engineering Materials. 2008. Trans Tech Publ.
    [52] Xin, R.L., et al. Effect of microstructure and texture on corrosion resistance of magnesium alloy. in Materials Science Forum. 2009. Trans Tech Publ.
    [53] Kaesel, V., et al. Approach to control the corrosion of magnesium by alloying. in Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications. 2003. Wiley Online Library.
    [54] Hort, N., et al., Magnesium alloys as implant materials–principles of property design for Mg–RE alloys. Acta Biomaterialia, 2010. 6(5): p. 1714-1725.
    [55] Gray, J., B.J.J.o.a. Luan, and compounds, Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds, 2002. 336(1-2): p. 88-113.
    [56] Huang, J.-j., et al., Preparation and property of coating on degradable Mg implant. Chinese Journal of Nonferrous Metals, 2007. 17(9): p. 1465.
    [57] Chen, Y., et al., Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomedical Materials, 2011. 6(2): p. 025005.
    [58] Campos, C.M., et al., Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. International Journal of Molecular Sciences, 2013. 14(12): p. 24492-24500.
    [59] Tao, J., et al. Computational Modeling of the Corrosion Process and Mechanical Performance of Biodegradable Stent. in Journal of Physics: Conference Series. 2021. IOP Publishing.
    [60] Pinto Slottow, T.L., R. Pakala, and R.J.E.h.j. Waksman, Serial imaging and histology illustrating the degradation of a bioabsorbable magnesium stent in a porcine coronary artery. European Heart Journal, 2008. 29(3): p. 314-314.
    [61] Wang, Q., et al., Improvement of mechanical performance of bioresorbable magnesium alloy coronary artery stents through stent pattern redesign. Applied Sciences, 2018. 8(12): p. 2461.
    [62] Oliver, M.J., The science of fistula maturation. 2018, Am Soc Nephrol.
    [63] Feldman, H., et al., Predictors of successful arteriovenous fistula maturation. 2003. 42(5): p. 1000-1012.
    [64] Wu, W., et al., Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering: B, 2011. 176(20): p. 1733-1740.
    [65] Wu, W., et al., Finite element shape optimization for biodegradable magnesium alloy stents. Annals of Biomedical Engineering, 2010. 38(9): p. 2829-2840.
    [66] Gastaldi, D., et al., Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(3): p. 352-365.
    [67] Ramanan, L. Simulation of non-linear analysis in ANSYS. in ANSYS India users conference. 2006.
    [68] Schiavone, A. and L.G. Zhao, A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment. Mechanics of Advanced Materials and Modern Processes, 2015. 1(1): p. 1.
    [69] Ginsberg, G., et al., In vivo evaluation of a new bioabsorbable self-expanding biliary stent. Gastrointestinal Endoscopy, 2003. 58(5): p. 777-784.
    [70] Liu, F., et al., The processing of Mg alloy micro-tubes for biodegradable vascular stents. Materials Science and Engineering, 2015. 48: p. 400-407.
    [71] Arfaoui, Y.K., Evaluation of a new instrument for measuring segmented radial force of SE-stents implemented in the LGF. 2018.
    [72] Bukala, J., P. Kwiatkowski, and J.J.I.j.f.n.m.i.b.e. Malachowski, Numerical analysis of crimping and inflation process of balloon‐expandable coronary stent using implicit solution. International Journal for Numerical Methods in Biomedical Engineering, 2017. 33(12): p. e2890.
    [73] Kang, M.H., et al., An asymmetric surface coating strategy for improved corrosion resistance and vascular compatibility of magnesium alloy stents. Materials & Design, 2020. 196: p. 109182.
    [74] Adekanmbi, I., et al., Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Materials Science and Engineering: C, 2017. 77: p. 1135-1144.
    [75] Sillekens, W. and D. Bormann, Biomedical applications of magnesium alloys, in Advances in Wrought Magnesium Alloys. 2012, Elsevier. p. 427-454.
    [76] Wang, Q., et al., Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 65: p. 415-427.
    [77] ASTM F3067-14. Guide for Radial Loading of Balloon Expandable and Self Expanding Vascular Stents.
    [78] Wu, W., et al., An FEA method to study flexibility of expanded coronary stents. Journal of Materials Processing Technology, 2007. 184(1-3): p. 447-450.
    [79] Wu, W., et al., Stent expansion in curved vessel and their interactions: a finite element analysis. Journal of Biomechanics, 2007. 40(11): p. 2580-2585.
    [80] Yan, X., et al., In Situ Observation of the Degradation Behavior and the Systematic Investigation of Corrosion Mechanism in AZ31 Alloy. Advanced Engineering Materials, 2021: p. 2100396.
    [81] Schille, C., et al., Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation. Materials Science and Engineering: B, 2011. 176(20): p. 1797-1801.
    [82] Galvin, E., et al., Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Medical & Biological Engineering & Computing, 2017. 55(8): p. 1261-1275.
    [83] Tuba, F., et al., Hydrolysis induced deterioration of compressive properties of poly-ε-caprolactone. FME Transactions, 2009. 37(1): p. 33-37.
    [84] Zhou, Z., et al., In vitro degradation behaviors of poly-L-lactide/bioactive glass composite materials in phosphate-buffered solution. Polymer Bulletin, 2009. 63(4): p. 575-586.
    [85] Scharnagl, N., et al., Corrosion protection of magnesium alloy AZ31 by coating with poly (ether imides)(PEI). Surface and Coatings Technology, 2009. 203(10-11): p. 1423-1428.
    [86] Shi, S., et al., Preparation and characterization of microporous poly (D, L-lactic acid) film for tissue engineering scaffold. International Journal of Nanomedicine, 2010. 5: p. 1049-1055.
    [87] Wang, J., et al., Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomaterialia, 2017. 50: p. 546-555.

    無法下載圖示 全文公開日期 2031/10/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE