簡易檢索 / 詳目顯示

研究生: 王星淳
Hsing-Chun Wang
論文名稱: 利用電漿改質還原氧化石墨烯應用在超感度電化學雙陣列卵巢癌感測器技術開發之研究
Development of Ultrasensitive Electrochemical and Simultaneous Multiplexed using Plasma Modification rGO Substrate for Ovarian Cancer Sensor
指導教授: 王復民
Fu-Ming Wang
口試委員: 袁九重
CHIOU-CHUNG YUAN
蘇威年
Wei-Nien Su
葉淇臺
Chi-Tai Yeh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 雙陣列感測器還原氧化石墨烯卵巢癌CA125 抗原CK19 抗原
外文關鍵詞: Multiple bio-sensor device, reduce Graphene Oxide, CA125 antigen, CK19 antigen
相關次數: 點閱:234下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將開發一款可用於偵測卵巢癌抗原之超敏感度電化學雙陣列感測器,此感測器是由還原氧化石墨烯(reduce Graphene Oxide, rGO)為主體所構成。藉由還原氧化石墨烯的良導電特性以電漿技術進行表面改質,並利用甲苯胺藍(Toluidine blue ,TB)與普魯士藍(Prussian blue ,PB)的合成,增加rGO表面之官能基種類與數量,進一步與卵巢上皮癌細胞所產生之特定蛋白質抗原(CA125與CK19)進行化學鍵之結合,並以微分脈衝伏安法(DPV)同時間地進行電化學測試並交叉分析建立其關係式。
    初步研究顯示,經由特定介質的電化學還原反應,其反應機制分析之後可偵測極微量約< 10-14 g/ml的濃度變化,相對於傳統免疫定量分析方法能低於10-6 g/ml(約1 U/ml)濃度,其靈敏度差異極大。此偵測方法之開發可瞭解當卵巢癌患者之血清CA125遠低於正常值時(如< 35 U/ml )的追蹤情形,並對於偵測低濃度CA 125建立其意義性,且在本研究中也發現在不同型態下之細胞所產生之CA125抗體也有著不同性質,其濃度的變化、型態病情復發及嚴重程度等有著密切相關。
    本研究將會提供一個極新極靈敏的模式裝置,應用在卵巢癌細胞線ES-2、HeyA8及HeLa之細胞萃取液與患者血液中萃取之血清檢測,並建立其抗原與CA125與CK-19在卵巢癌患者與健康者之表現性,將來並進一步針對此裝置發展成可上市之產品應用於臨床研究上。


    This study developed an ultra-sensitive electrochemical multiple bio-sensor device. It can be used to detect ovarian cancer. This sensor is composed of reduced graphene oxide (rGO) by a substrate. The conductivity of graphene oxide can be increased by modifying the surface of rGO using electric-plasma technology. As well to increase the types of functional groups on the surface of rGO by synthesizing the Toluidine Blue (TB) and Prussian Blue (PB). Furthermore, the specific protein antigens (CA125 and CK19), that produced by ovarian epithelial cancer cells, is combined on the rGO surface.
    Using the differential pulse voltammetry (DPV) electrochemical tests simultaneously and cross-analysis to establish its relationship.
    Preliminary studies have shown that the electrochemical reduction reaction of a specific medium can detect a very small concentration change about <10-14 g/ml. While traditional immuno quantitative analysis methods only can detect about 10-6 g/ml. It shows the significant difference of sensitivity between these methods.
    The developed detection method has significant improvement to detect low concentration of CA125, because it can be used to track the patient conditions even the serum CA125 of ovarian cancer patients is below the normal value, such as <35 IU/ml.
    Other than that, in this study also found that the CA125 antibodies produced by different types of cells will have different properties, such as concentration and the type of recurrence and severity of disease.
    This study provides a novel sensitive model device, which is used in the detection on ovarian cancer cell lines, such as ES-2, HeyA8 and HeLa cells and serum extracted from patients' blood. Establishes its antigen and CA125 and CK-19 in the performance of ovarian cancer patients and healthy people. In the future, it will be developed into marketable products for clinical research.

    摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 6 第二章 文獻回顧 7 2.1 卵巢癌腫瘤指標簡介與現今診斷方式 7 2.1.1 卵巢癌之簡介 7 2.1.2 傳統卵巢之篩檢 9 2.1.3 卵巢癌檢測方式-非侵入式超音波檢測法(超音波檢測) 10 2.1.4 西方墨點法(Western Blot) 10 2.1.6 卵巢癌檢測方式-卵巢癌腫瘤指標檢測法(tumor marker,CA125) 12 2.2 電化學生物感測器簡介與現今開發 13 2.2.1 現今免疫酵素電化學分析法 13 2.2.2 感測器裝置-石墨烯感測器 14 2.2.3 多重感測器發展 17 2.2.4 多重感測器晶片開發 19 第三章 實驗方法及儀器設備 21 3.1 細胞線蛋白萃取 21 3.1.1 細胞線培養與蛋白質萃取設備 21 3.1.2 細胞線培養與蛋白質萃取藥品 21 3.2 電化學實驗 23 3.2.1 電化學實驗設備 23 3.2.2 電化學實驗藥品 23 3.3 實驗步驟 25 3.4 細胞培養實驗步驟 26 3.3.1 解凍管 27 3.3.2 培養與繼代 27 3.3.3 凍管 28 3.3.4 破細胞 28 3.3.5 蛋白質濃度計算 30 3.3.6 西方墨點法 31 3.3.7 人體血清 37 3.5 電化學細胞測試 37 3.4.1 多重電化學感測器材料配置 37 3.4.2 石墨烯水溶液電漿表面改質 40 3.4.3 X射線光電子能譜(X-ray photoelectron spectroscopy,XPS) 40 3.4.4 多重電化學感測器配置 42 3.4.5 多重電化學感測器系統建立 44 3.4.6 傅里葉轉換紅外光譜-全反射裝置 (FTIR-ATR) 45 3.4.7 微分脈衝伏安法(Differential Pulse Voltammetry,DPV) 46 第四章 結果與討論 48 4.1 細胞馴養 48 4.1.1 細胞馴養結果 48 4.1.2 細胞馴養蛋白質濃度測試結果 50 4.1.3 西方墨點法結果 51 4.2 石墨烯材料改質與XPS鑑定 53 4.2.1 石墨烯電漿改質 53 4.2.2 石墨烯電漿改質XPS測定結果 54 4.3 單陣列電化學模組測試 55 4.3.1 單陣列卵巢癌感測器系統CA125/硫菫測試結果 56 4.3.2 單陣列卵巢癌感測器系統CK19/普魯士藍測試結果 57 4.3.3 單陣列卵巢癌感測器系統CA125/甲苯胺藍測試結果 58 4.4 雙陣列電化學模組建立 59 4.4.1 雙陣列感測器參數建立 59 4.4.2 雙陣列感測器模組測試結果-商用抗原 61 4.4.3 FTIR-ATR測定結果 62 4.5 雙陣列電化學模組應用於細胞株蛋白質原液 63 4.5.1 雙陣列感測器模組測試結果-ES-2細胞株 66 4.5.2 雙陣列感測器模組測試結果-HeyA8細胞株 67 4.5.3 雙陣列感測器模組測試結果-HeLa細胞株 68 4.6 雙陣列電化學模組應用於臨床患者血清 69 4.7 雙陣列電化學模組抗體修正-CA125多株抗體 71 4.7.1 CA125多株型抗體應用在細胞株之雙陣列系統測試結果 71 4.7.2 CA125多株型抗體應用在人體血清之雙陣列系統測試結果 73 4.7.3 現今生物檢測技術發展成果比較 74 第五章 結論與未來工作 75 參考文獻 77

    [1] 衛生福利部統計專區. (2019). 107年死因統計結果分析. Available: https://dep.mohw.gov.tw/DOS/np-1776-113.html
    [2] C. C. NSW. (1955). 什麼是癌症. Available: http://languages.cancercouncil.com.au/zh-hant/%e7%99%8c%e7%97%87%e4%bb%8b%e7%b4%b9/%e4%bb%80%e9%ba%bc%e6%98%af%e7%99%8c%e7%97%87%ef%bc%9f/
    [3] R. C. Bast Jr et al., "A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer," vol. 309, no. 15, pp. 883-887, 1983.
    [4] 財團法人全民健康基金會. (2018). 發生率及死亡率均超越子宮頸癌,卵巢癌怎發現?怎治療? Available: https://www.twhealth.org.tw/journalView.php?cat=1&sid=6&page=1&fbclid=IwAR3pf4-CXVcjWGii3hd3DzyUabIE3hPkS_RG2rTKfq6u25CoMNRyrsNe5Ak
    [5] 財團法人台灣癌症基金會. (2019). 卵巢癌(Ovarian Cancer). Available: https://www.canceraway.org.tw/page.asp?IDno=2215
    [6] 國泰綜合醫院婦產中心. (2019). 卵巢癌. Available: https://www.cgh.org.tw/tw/content/depart/cancer/intropage18.html?fbclid=IwAR3kV9KE4VDsV2iE3O9pwkL17x2UFrIS0m91_bByCXuK3-j3B--6cEMxQLU
    [7] 台灣婦癌醫學會. (2018). 卵巢癌. Available: http://www.tago.org.tw/news2_detail.asp?NewsID=106
    [8] G. C. Jayson, E. C. Kohn, H. C. Kitchener, and J. A. J. T. L. Ledermann, "Ovarian cancer," vol. 384, no. 9951, pp. 1376-1388, 2014.
    [9] I. B. Vergote, O. P. Børmer, V. M. J. A. j. o. o. Abeler, and gynecology, "Evaluation of serum CA 125 levels in the monitoring of ovarian cancer," vol. 157, no. 1, pp. 88-92, 1987.
    [10] 康健雜誌編輯部. (2013). 卵巢癌真的很難早期發現?. Available: https://www.commonhealth.com.tw/article/article.action?nid=73621&fbclid=IwAR0cai5HIrIsezmmw2N7H9hz3qk7qBbgaJ72xDLJsOmTyMM2DCGxl1dJ-Nc
    [11] R. F. Ozols et al., "Focus on epithelial ovarian cancer," vol. 5, no. 1, pp. 19-24, 2004.
    [12] B. Nakata et al., "Serum CYFRA 21‐1 is one of the most reliable tumor markers for breast carcinoma," vol. 89, no. 6, pp. 1285-1290, 2000.
    [13] B. Nakata, T. Takashima, Y. Ogawa, T. Ishikawa, and K. J. B. j. o. c. Hirakawa, "Serum CYFRA 21-1 (cytokeratin-19 fragments) is a useful tumour marker for detecting disease relapse and assessing treatment efficacy in breast cancer," vol. 91, no. 5, pp. 873-878, 2004.
    [14] J.-L. Pujol et al., "CYFRA 21-1 is a prognostic determinant in non-small-cell lung cancer: results of a meta-analysis in 2063 patients," vol. 90, no. 11, pp. 2097-2105, 2004.
    [15] R. Siegel, E. Ward, O. Brawley, and A. J. C. a. c. j. f. c. Jemal, "Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths," vol. 61, no. 4, pp. 212-236, 2011.
    [16] T. Uenishi et al., "Cytokeratin-19 fragments in serum (CYFRA 21-1) as a marker in primary liver cancer," vol. 88, no. 12, pp. 1894-1899, 2003.
    [17] R.-I. Stefan-van Staden et al., "Phthalocyanine-BODIPY dye: synthesis, characterization, and utilization for pattern recognition of CYFRA 21-1 in whole blood samples," vol. 409, no. 26, pp. 6195-6203, 2017.
    [18] NOCC. (2019). Types & Stages of Ovarian Cancer. Available: http://ovarian.org/about-ovarian-cancer/what-is-ovarian-cancer/types-a-stages
    [19] C. Rancourt, I. Matte, D. Lane, and A. J. O. c. b. s. p. V. Piché, "The role of MUC16 mucin (CA125) in the pathogenesis of ovarian cancer," vol. 1, pp. 67-84, 2012.
    [20] J. Li, O. Fadare, L. Xiang, B. Kong, W. J. J. o. h. Zheng, and oncology, "Ovarian serous carcinoma: recent concepts on its origin and carcinogenesis," vol. 5, no. 1, p. 8, 2012.
    [21] J. S. Fleming, C. R. Beaugié, I. Haviv, G. Chenevix-Trench, O. L. J. M. Tan, and c. endocrinology, "Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses," vol. 247, no. 1-2, pp. 4-21, 2006.
    [22] W. Cheng, J. Liu, H. Yoshida, D. Rosen, and H. J. N. m. Naora, "Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract," vol. 11, no. 5, pp. 531-537, 2005.
    [23] OCRA. (2020). Epithelial Ovarian Cancer. Available: https://ocrahope.org/patients/about-ovarian-cancer/types-ovarian-cancer/epithelial-ovarian-cancer/
    [24] R. Rolon, M. del Mar, D. Allen, G. Richardson, and C. J. C. R. i. P. Clement, "Abdominal Wall Clear Cell Carcinoma: Case Report of a Rare Event with Potential Diagnostic Difficulties," vol. 2019, 2019.
    [25] D. Ford, D. F. Easton, D. T. Bishop, S. A. Narod, and D. E. J. T. L. Goldgar, "Risks of cancer in BRCA1-mutation carriers," vol. 343, no. 8899, pp. 692-695, 1994.
    [26] 大腸直腸癌專輯. (2019). 卵巢癌之早期診斷. Available: http://www.tccf.org.tw/old/magazine/vol6/3.htm
    [27] 台灣癌症防治網. (2014). 帶有BRCA1基因突變的女性早期外科手術可以減少卵巢癌發生的風險. Available: http://web.tccf.org.tw/lifetype/index.php?op=ViewArticle&articleId=3499&blogId=1
    [28] Wikipedia. (2020). 西方墨點法. Available: https://zh.wikipedia.org/wiki/%E8%A5%BF%E6%96%B9%E5%A2%A8%E9%BB%9E%E6%B3%95
    [29] G. Gallo-Oller, R. Ordonez, and J. J. J. o. i. m. Dotor, "A new background subtraction method for Western blot densitometry band quantification through image analysis software," vol. 457, pp. 1-5, 2018.
    [30] A. Biolabs. (2019). Western-blotting 流程整理. Available: https://www.acebiolab.com/TW/news/22
    [31] 艾克索生物科技產品部. (2015). 西方墨點法 Western Blot. Available: http://www.axelbiotech.com/product-info/immunology-reagent-post/xifangmodianfawesternblot
    [32] R. C. Bast, B. Hennessy, and G. B. J. N. R. C. Mills, "The biology of ovarian cancer: new opportunities for translation," vol. 9, no. 6, pp. 415-428, 2009.
    [33] I. E. Tothill, "Biosensors for cancer markers diagnosis," in Seminars in cell & developmental biology, 2009, vol. 20, no. 1, pp. 55-62: Elsevier.
    [34] F. Shahzad, S. A. Zaidi, C. M. J. S. Koo, and A. B. Chemical, "Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection," vol. 241, pp. 716-724, 2017.
    [35] S.-H. Cao et al., "A label-free and ultrasensitive DNA impedimetric sensor with enzymatic and electrical dual-amplification," vol. 144, no. 14, pp. 4175-4179, 2019.
    [36] B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, and G.-J. J. A. n. Zhang, "Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor," vol. 8, no. 3, pp. 2632-2638, 2014.
    [37] D. Grieshaber, R. MacKenzie, J. Vörös, and E. J. S. Reimhult, "Electrochemical biosensors-sensor principles and architectures," vol. 8, no. 3, pp. 1400-1458, 2008.
    [38] S. Kochmann, T. Hirsch, and O. S. J. T. T. i. A. C. Wolfbeis, "Graphenes in chemical sensors and biosensors," vol. 39, pp. 87-113, 2012.
    [39] 美卡諾水科技. (2017). 二維碳網石墨烯,污水處理蘊潛力. Available: https://kknews.cc/science/53mnxa6.html
    [40] L. Liu et al., "A label-free voltammetric immunoassay based on 3D-structured rGO–MWCNT–Pd for detection of human immunoglobulin G," vol. 211, pp. 170-176, 2015.
    [41] H. Zhao et al., "An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection," vol. 65, pp. 23-30, 2015.
    [42] C. Zhai, X. Sun, W. Zhao, Z. Gong, X. J. B. Wang, and Bioelectronics, "Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-stepelectrodeposition," vol. 42, pp. 124-130, 2013.
    [43] Z.-W. Wu, X.-C. Xie, H.-R. Guo, H. Xia, K.-J. J. A. Huang, and B. Chemistry, "A highly sensitive electrochemical biosensor for protein based on a tetrahedral DNA probe, N-and P-co-doped graphene, and rolling circle amplification," pp. 1-8, 2020.
    [44] M. Yang, A. Javadi, H. Li, S. J. B. Gong, and Bioelectronics, "Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet," vol. 26, no. 2, pp. 560-565, 2010.
    [45] M. M. Rahman et al., "A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly (thionine) film," vol. 202, pp. 536-542, 2014.
    [46] M. J. M. t. Pumera, "Graphene in biosensing," vol. 14, no. 7-8, pp. 308-315, 2011.
    [47] M. Portaccio et al., "Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection," vol. 109, pp. 340-347, 2013.
    [48] X. Jia, Z. Liu, N. Liu, Z. J. B. Ma, and Bioelectronics, "A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers," vol. 53, pp. 160-166, 2014.
    [49] H. D. Yuqian Ren, Wei Shen, and Zhiqiang Gao, "A Highly Sensitive and Selective Electrochemical Biosensor for Direct Detection of MicroRNAs in Serum," 2013.
    [50] F. Wang, W. Gong, L. Wang, and Z. J. M. A. Chen, "Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide," vol. 182, no. 11-12, pp. 1949-1956, 2015.
    [51] H. Chang et al., "Layer-by-layer assembly of graphene, Au and poly (toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide," vol. 41, pp. 789-794, 2013.
    [52] L. Feng, Y. Chen, J. Ren, and X. J. B. Qu, "A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells," vol. 32, no. 11, pp. 2930-2937, 2011.
    [53] S. Beyranvand, M. F. Gholami, A. D. Tehrani, J. r. P. Rabe, and M. J. L. Adeli, "Construction and Evaluation of a Self-Calibrating Multiresponse and Multifunctional Graphene Biosensor," vol. 35, no. 32, pp. 10461-10474, 2019.
    [54] S. Kumar et al., "Reduced graphene oxide modified smart conducting paper for cancer biosensor," vol. 73, pp. 114-122, 2015.
    [55] Y. Yang, A. M. Asiri, D. Du, and Y. J. A. Lin, "Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides," vol. 139, no. 12, pp. 3055-3060, 2014.
    [56] E. Mahmoudi, H. Fakhri, A. Hajian, A. Afkhami, and H. J. B. Bagheri, "High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms," vol. 130, p. 107348, 2019.
    [57] Z.-D. Gao, Y. Qu, T. Li, N. K. Shrestha, and Y.-Y. J. S. r. Song, "Development of amperometric glucose biosensor based on prussian blue functionlized TiO 2 nanotube arrays," vol. 4, p. 6891, 2014.
    [58] J. Huang, J. Tian, Y. Zhao, S. J. S. Zhao, and A. B. Chemical, "Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay," vol. 206, pp. 570-576, 2015.
    [59] S. Gurunathan et al., "Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy," vol. 10, p. 6257, 2015.
    [60] S. Azzouzi et al., "A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of L-lactate tumor biomarker," vol. 69, pp. 280-286, 2015.
    [61] H.-P. Peng et al., "Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue–graphene oxide nanocomposites," vol. 207, pp. 269-276, 2015.
    [62] M. K. Satapathy, W.-H. Chiang, E.-Y. Chuang, C.-H. Chen, J.-L. Liao, and H.-N. J. P. Huang, "Microplasma-assisted hydrogel fabrication: A novel method for gelatin-graphene oxide nano composite hydrogel synthesis for biomedical application," vol. 5, p. e3498, 2017.
    [63] D. Feng et al., "Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels," vol. 201, pp. 360-368, 2014.
    [64] X. Liu, L. Xie, and H. J. J. o. E. C. Li, "Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid," vol. 682, pp. 158-163, 2012.
    [65] C. Cong et al., "Sensitive measurement of tumor markers somatostatin receptors using an octreotide-directed Pt nano-flakes driven electrochemical sensor," vol. 208, p. 120286, 2020.
    [66] 黃詩涵, "Ultra-sensitive Electrochemical Biosensor for Ovarian Cancer Detection," National Taiwan University of Science and Technology, 2016.
    [67] S. Cinti, F. J. B. Arduini, and Bioelectronics, "Graphene-based screen-printed electrochemical (bio) sensors and their applications: Efforts and criticisms," vol. 89, pp. 107-122, 2017.
    [68] Y. Wang et al., "Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers," vol. 136, pp. 84-90, 2019.
    [69] C. Gartner, B. L. López, L. Sierra, R. Graf, H. W. Spiess, and M. J. B. Gaborieau, "Interplay between structure and dynamics in chitosan films investigated with solid-state NMR, dynamic mechanical analysis, and X-ray diffraction," vol. 12, no. 4, pp. 1380-1386, 2011.
    [70] 尚偉股份有限公司. (2019). FT/IR樣品量測技術 - 全反射裝置(ATR)之理論及應用. Available: http://www.sun-way.com.tw/Technology/tech-2_more.asp?KnowledgeID=22
    [71] S. Antoun et al., "Glucose restriction combined with chemotherapy decreases telomere length and cancer antigen‑125 secretion in ovarian carcinoma," vol. 19, no. 2, pp. 1338-1350, 2020.
    [72] ExPASy. (2012). Cellosaurus HEY A8 (CVCL_8878). Available: https://web.expasy.org/cellosaurus/CVCL_8878
    [73] ATCC. (2020). ES-2 (ATCC® CRL-1978™). Available: https://www.atcc.org/Products/All/CRL-1978.aspx
    [74] D. Huang, L. Wang, Y. Zhan, L. Zou, B. Ye, and Bioelectronics, "Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@ CuS-GR," vol. 140, p. 111358, 2019.
    [75] S. Zhang, J. Yang, and J. J. B. Lin, "3, 3′–diaminobenzidine (DAB)–H2O2–HRP voltammetric enzyme-linked immunoassay for the detection of carcionembryonic antigen," vol. 72, no. 1, pp. 47-52, 2008.
    [76] N. Gan et al., "An endonuclease-linked multiplex immunoassay for tumor markers detection based on microfluidic chip electrophoresis for DNA analysis," vol. 272, pp. 526-533, 2018.
    [77] W. Wen et al., "Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen," vol. 83, pp. 142-148, 2016.
    [78] M. Zou and S. J. B. o. t. K. C. S. Wang, "An Aptamer‐based Self‐Catalytic Colorimetric Assay for Carcinoembryonic Antigen," vol. 38, no. 10, pp. 1143-1148, 2017.
    [79] J.-J. Yang, J.-T. Cao, Y.-L. Wang, H. Wang, Y.-M. Liu, and S.-H. J. J. o. E. C. Ma, "Sandwich-like electrochemiluminescence aptasensor based on dual quenching effect from hemin-graphene nanosheet and enzymatic biocatalytic precipitation for sensitive detection of carcinoembryonic antigen," vol. 787, pp. 88-94, 2017.
    [80] G. Paniagua et al., "Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element," vol. 1061, pp. 84-91, 2019.
    [81] Z. Qiu, J. Shu, J. Liu, and D. J. A. c. Tang, "Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device," vol. 91, no. 2, pp. 1260-1268, 2018.

    QR CODE