簡易檢索 / 詳目顯示

研究生: 鍾官諭
Kuan-Yu Chung
論文名稱: 製備具多層石墨烯電極之氮化鎵高電子遷移率電晶體及其特性研究
Growth and characterizations of multi layer graphene electrode on gallium nitride high electron mobility transistor
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 陳一塵
I-Chen Chen
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 石墨烯高電子遷移率電晶體
外文關鍵詞: graphene, HEMT
相關次數: 點閱:672下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,第三代寬能隙半導體材料氮化鎵被廣泛應用於高頻及高功率元件,然而高功率操作下元件廢熱堆積,會使元件特性衰退,傳統金屬電極也有熱退化問題。本研究在氮化鎵高電子遷移率電晶體(GaN HEMT)基板上使用金屬摻雜調變石墨烯功函數,使其能在GaN上形成歐姆與蕭特基接觸,製備石墨烯電極,其高熱傳導特性能輔助散熱,提高元件熱穩定性。藉由使用氮摻雜超奈米晶鑽石薄膜(N-UNCD)作為固態碳源,配合鎳金屬催化層之熱處理轉換技術製備石墨烯薄膜。研究初期通過調整N-UNCD成長的預熱溫度、加入偏壓以及調整氮氣流量提高成核密度並降低石墨烯的電阻率,成功在氮化鎵基板上成長出均勻度高,電阻率的10 Ω-cm的連續石墨烯薄膜。
    通過金屬摻雜方式在GaN HEMTs基板上製作石墨烯歐姆與蕭特基接觸,經變溫I-V量測,石墨烯歐姆接觸呈現正溫度係數,為過渡金屬特性;石墨烯蕭特基接觸在配合類鑽碳膜作為鈍化層後具有0.95 eV的蕭特基能障與1.36的理想因子。在變溫I-V量測中與傳統金屬相反,蕭特基能障隨溫度上升而增加,理想因子隨溫度上升而下降,適合在高溫操作下使用。後續使用金屬摻雜石墨烯電極結構應用在氮化鎵高電子遷移率電晶體,石墨烯電極具有較傳統金屬電極更高的飽和電流,適合高功率應用。通過調變閘極偏壓能夠觀察到飽和電流變化,能調變空乏區寬度,具控制能力;然而元件無法隨閘極逆偏壓的增加而截止。在變溫Ids-Vds量測中,石墨烯電極在320 oC下較室溫時僅有39%衰退,而傳統金屬電極則有51%衰退。在350 oC環境進行熱穩定性量測中,傳統金屬電極在2小時後有明顯衰退現象,電阻值也有所上升,而石墨烯電極則維持穩定,顯示石墨烯電極具有較佳的熱穩定性,適合應用於高功率操作。


    In recent years, GaN, a third-generation wide-bandgap semiconductor material GaN has been widely used in high-frequency and high-power devices. However, the accumulation of waste heat in high-power operation causes characteristics degradation in devices and traditional metal electrode. In this study, graphene electrodes were prepared on GaN HEMTs by metal doping method, which could modulate the work function of graphene to fabricate graphene ohmic and Schottky contacts on GaN. With high thermal conductivity, graphene electrode improves both heat dissipation and thermal stability. Multi layer graphene (MLG) is prepared by using ultrananocrystalline diamond(N-UNCD) as solid carbon source with nickel metal catalyst technique. By adjusting the preheating temperature, adding bias pressure and adjusting the nitrogen flow rate in N-UNCD growth to increase its nucleation density and reduce the electrical resistivity of graphene, a continuous graphene film with high uniformity and 10 Ω-cm electrical resistivity was successfully grown on the GaN HEMTs.
    In I-V-T measurement, graphene ohmic contact exhibits transition metal property with a positive temperature coefficient (PTC). Graphene Schottky contact has a Schottky barrier height of 0.95 eV and an ideality factor of 1.36 after diamond like carbon (DLC) film is grown as passivation layer. In contrast to traditional metal electrode, the Schottky barrier height of graphene electrode increases and its ideality factor decreases with increasing temperature, making them suitable for high temperature operation. Next, graphene electrode is grown on GaN HEMTs, the saturation current variation can be observed by adjusting the gate bias voltage, meaning that the width of the depletion region can be adjusted and the controllability of gate. In temperature change Ids-Vds measurement from room temperature to 320oC, graphene electrode decays only 39%, while the conventional metal electrode decays by 51%. In the thermal stability measurement at 350 oC, traditional metal electrodes showed significant degradation after 2 hours and the resistance value also increased, while graphene electrode remained stable, indicating that the graphene electrode has better thermal stability, suitable for high power operation.

    目錄 第一章 序論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 5 2.1 GaN HEMTs元件介紹 5 2.1.1 GaN HEMTs元件的結構與原理 5 2.1.2 影響GaN HEMTs元件性能的原因 6 2.1.3 GaN HEMTs之電極材料 8 2.1.4 GaN HEMTs元件的散熱方式 11 2.2 N-UNCD薄膜介紹 16 2.2.1 N-UNCD薄膜之製程優化 17 2.3 石墨烯薄膜製備方法 21 2.4 石墨烯電極 26 第三章 實驗方法 32 3.1 GaN HEMTs製備石墨烯電極實驗流程 32 3.2 製程設備 37 3.2.1 微波電漿化學氣相沉積系統 37 3.2.2 高真空熱蒸鍍系統 38 3.2.3 低壓化學沉積系統 38 3.2.4 電子迴旋共振化學氣相沉積系統 39 3.3分析設備 39 3.3.1 拉曼光譜儀 39 3.3.2 掃描式電子顯微鏡 40 3.3.3 四點探針量測系統 40 3.3.4 電流電壓量測儀 41 第四章 實驗結果 42 4.1 GaN HEMT上成長氮摻雜超奈米晶鑽石薄膜之研究 42 4.1.1 不同成長時間對氮摻雜超奈米晶鑽石薄膜品質的影響 43 4.1.2 不同預熱溫度對氮摻雜超奈米晶鑽石薄膜品質的影響 45 4.1.3 不同偏壓對氮摻雜超奈米晶鑽石薄膜品質的影響 48 4.1.4 調整氮氣流量對氮摻雜超奈米晶鑽石薄膜品質的影響 51 4.2 石墨烯電極與其電性研究 55 4.2.1 調整氮氣流量對多層石墨烯薄膜品質的影響 55 4.2.2 石墨烯電極特徵接觸電阻量測 56 4.2.4 石墨烯薄膜/GaN HEMT基板之電性量測 59 4.3 具石墨烯電極GaN HEMTs製程與元件特性之研究 66 4.3.1 傳統金屬電極GaN HEMTs 66 4.3.2 具石墨烯電極GaN HEMTs 70 4.3.3 溫度相依電特性分析 73 第五章 結論 76 參考資料 80

    1. https://nexgenpowersystems.com/.
    2. A. Imbruglia, et al. WInSiC4AP: Wide band gap Innovative SiC for Advanced Power, AEIT AUTOMOTIVE 2019, p.1.
    3. A. Hassan, et al., GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review, IEEE Access(2018). 6, p.78790.
    4. https://www.edn.com/,
    5. https://www.Qorvo.com.
    6. http://www.yole.fr/.
    7. C. Yang, Fabrication and characterization of AlGaN/GaN high electron mobility transistor, Auburn university (2015).
    8. P. Javorka, Fabrication and characterization of AlGaN/GaN high electron mobility transistors, Bibliothek der RWTH Aachen (2004).
    9. P. Zanoni, GaN HEMT reliability research-a white paper(2017).
    10. M. G. Ancona et al., Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation, J. Appl. Phys.(2012). 111, p.074504.
    11. M. Meneghini et al., Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias, Appl. Phys. Lett.(2012). 100, p.033505.
    12. F. Gao et al., Impact of water-assisted electrochemical reactions on the OFF-state degradation of AlGaN/GaN HEMTs, IEEE Trans. Electron Devices(2013). 61, p.437.
    13. F. Lin et al. Low resistance Ti/Al/Ni/Au Ohmic contact to (NH 4) 2 S x treated n-type GaN for high temperature applications, ICSIST 2008, p.726
    14. M. Piazza et al., Degradation of TiAlNiAu as ohmic contact metal for GaN HEMTs, Microelectron. Reliab.(2009). 49, p.1222.
    15. R. Cuerdo, et al. Characterization of Schottky contacts on n-GaN at high temperature, EDSEC 2005, p.175
    16. Y. Chen et al., Degradation mechanism of AlGaN/GaN HEMTs during high temperature operation stress, Semiconductor Science Technology(2017). 33, p.015019.
    17. R. Guggenheim et al. Roadmap review for cooling high-power GaN HEMT devices, COMCAS 2017, p.1
    18. A. Bar-Cohen, Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm, J. Nanotechnol. Eng. Med. (2013). p.4,
    19. J. Ditri et al., GaN Unleashed: The Benefits of Microfluidic Cooling, IEEE Trans. Semicond. Manuf.(2016). 29, p.376.
    20. F. Qi et al. Advanced cooling solutions of high power automotive module, PCIM Asia 2017, p.1
    21. J. Blevins et al. Recent progress in GaN-on-diamond device technology, CS MANTECH 2014, p.105
    22. T. Anderson et al. Process improvements for an improved diamond-capped GaN HEMT device, CS MANTECH 2013, p.206
    23. A. D. Koehler et al., Topside Nanocrystalline Diamond Integration on AlGaN/GaN HEMTs for High Temperature Operation, HITEC 2014, p. 1.
    24. M. Alomari et al., Diamond overgrown InAlN/GaN HEMT, Diamond Relat. Mater.(2011). 20, p.604.
    25. D. Maier, et al., InAlN/GaN HEMTs for Operation in the 1000 oC Regime: A First Experiment, IEEE Electron Device Lett.(2012). 33, p.985.
    26. C. Liao, Growth and optoelectronic characteristics of ultrananocrystalline diamond thin films on III-nitride based light-emitting diode, National Taiwan university of science and technology (2019).
    27. C. J. Wort et al., Diamond as an electronic material, Mater. Today(2008). 11, p.22.
    28. S. Bhattacharyya et al., Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Appl. Phys. Lett.(2001). 79, p.1441.
    29. N. Wiora et al., Grain boundary dominated electrical conductivity in ultrananocrystalline diamond, J. Appl. Phys.(2017). 122, p.145102.
    30. I. A. Velasco-Davalos, Hydrothermal epitaxy of functional perovskite thin films,Université du Québec, Institut national de la recherche scientifique (2016).
    31. W. Yuan et al., Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source, J. Mater. Chem. C(2016). 4, p.4778.
    32. A. Saravanan et al., Highly conductive diamond–graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties, ACS Appl. Mater. Interfaces (2015). 7, p.14035.
    33. Y. Tzeng et al., Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films, Sci. Rep.(2014). 4, p.4531.
    34. T. Chen, Growth and characterizations of multi layer graphene/Nitrogen doped ultrananocrystalline diamond electrode on light-emitting diode, National Taiwan university of science and technology (2021).
    35. H. Shu et al., What are the active carbon species during graphene chemical vapor deposition growth, Nanoscale(2015). 7, p.1627.
    36. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett.(2009). 9, p.4268.
    37. M. Losurdo et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys Chem Chem Phys(2011). 13, p.20836.
    38. T. Liang, et al., From Solid Carbon Sources to Graphene, Chin. J. Chem.(2016). 34, p.32.
    39. Z. Z. Sun et al., Growth of graphene from solid carbon sources (vol 468, pg 549, 2010), Nature(2011). 471, p.124.
    40. Z. W. Peng et al., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS Nano(2011). 5, p.8241.
    41. Z. Yan, et al., Growth of bilayer graphene on insulating substrates, ACS Nano(2011). 5, p.8187.
    42. H. J. Shin et al., Transfer-free growth of few-layer graphene by self-assembled monolayers, Adv. Mater.(2011). 23, p.4392.
    43. M. Xu, et al., Production of extended single-layer graphene, ACS Nano(2011). 5, p.1522.
    44. J. M. Garcia et al., Multilayer graphene grown by precipitation upon cooling of nickel on diamond, Carbon(2011). 49, p.1006.
    45. G. Fisichella et al., Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale, Nanoscale(2014). 6, p.8671.
    46. G. Fisichella et al., From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure, Appl. Phys. Lett.(2014). 105, p.063117.

    47. P. Sung Park et al., Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion, Appl. Phys. Lett.(2013). 102, p.153501.
    48. A. Nourbakhsh et al., Modified, semiconducting graphene in contact with a metal: Characterization of the Schottky diode, Appl. Phys. Lett.(2010). 97, p.163101.
    49. S. Kim, et al., Graphene-GaN Schottky diodes, Nano Res.(2015). 8, p.1327.
    50. B. Pandit et al., Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions, AIP Adv.(2016). 6, p.065007.
    51.
    52. G. N. Zhou et al., Gate Leakage Suppression and Breakdown Voltage Enhancement in p-GaN HEMTs Using Metal/Graphene Gates, IEEE Trans. Electron Devices(2020). 67, p.875.

    無法下載圖示 全文公開日期 2025/01/26 (校內網路)
    全文公開日期 2027/01/26 (校外網路)
    全文公開日期 2027/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE