簡易檢索 / 詳目顯示

研究生: 張正儒
Cheng-Ju Chang
論文名稱: 塔式散熱器性能提升之實驗與數值整合分析
The integrated study of Experimental and Numerical Simulation on Enhancing Heat-Dissipation performance for a Heat Sink Assembly
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 林榮慶
Zone-Ching Lin
黃緒哲
Shiuh-Jer Huang
向四海
Su - Hai Hsiang
郭振華
Jen-Hwa Guo
黃哲聖
James Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 276
中文關鍵詞: 渦流產生器散熱器熱管熱阻實驗量測數值模擬紐賽爾數
外文關鍵詞: Vortex Generator, Heat Sink Assembly, Experimental and Numerical, Nusselt Number
相關次數: 點閱:343下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
隨著晶片功率不斷地提升,導致CPU所產生之廢熱不斷地提高,因此如何將CPU維持在穩定的工作溫度下,即成為本研究之重點。本研究透過數值模擬及實驗驗證方法評估散熱器設計的散熱能力,首先透過修改熱管的排列方式,使氣流更能夠接觸到每一根熱管,提高熱管的實際效率。接著在平板鰭片上添加三角形開孔產生回流現象,以增加流體與平板鰭片的接觸機會;同時,因為於鰭片開孔的關係,使因熱浮力帶動之流體經此通道往上一層間流動,來增加對流的機會。最後,藉由加裝不同朝向之渦流產生器,使流體產生縱向流動,進而增加與平板鰭片的接觸機會,最終得以提高塔式散熱器的解熱能力。
本研究也針對熱管的啟動與性能進行測試,利用不同的加熱瓦數來量測熱管的溫度變化,以確認熱管在作動過程中,是否有發生燒乾(Dry out)的現象。結果顯示,熱管在使用上,當熱源發熱瓦數較低時,將使熱管的蒸發端溫度不足,導致熱管的熱阻提高,以致於降低熱管的熱傳導係數;同時也透過數值模擬方法,調整熱管在不同溫度下之熱傳導係數,並與實驗進行比對,求得與實驗值較為接近之熱管熱傳導係數,接著利用曲線嵌合的方式,得到加熱瓦數與熱管熱傳導係數間的關係 。
經由改善熱管、平板鰭片三角形開孔與渦流產生器的擺放位置,同時針對渦流產生器之幾何外型作最佳化後,數值計算結果顯示能提高塔式散熱器的散熱能力,其熱源溫度由349.2 K降至346 K,熱阻值由0.274 K/W降至0.252 K/W。更發現無論加裝任何形式之渦流產生器,皆確實能提升塔式散熱器的散熱能力,且使用Flow Up型式的渦流產生器能提供較大的流體縱向流動,有助於平板鰭片上方的溫度均勻分布;而使用Flow Down型式的渦流產生器,則能提高整體散熱器的散熱能力。接著再配合最佳化鰭片數量設計,在47片的情況下,熱源的溫度能夠降至343.8 K、熱阻降為0.234 K/W。另外在考量噪音與風扇性能之下,搭配選擇最合適之風扇轉速,將整體塔式散熱器的性能再次提升,以47片鰭片之散熱器搭配2,500 RPM的風扇(3.48 mmAq與86.9 CFM),更可將熱源溫度降至326.6 K。而實驗量測求得的溫度為327.4℃,與計算值的差異為0.8℃;至於熱阻則降為0.123 ℃/W,與實驗量測的熱阻值(0.129℃/W) 比較兩者之差異為4.65%。總結來說,本研究所建立之結合數值模擬、CNC實體製作與實驗驗證的研發設計模式,能幫助解決塔式散熱器在應用上所遇到之設計問題,並提供設計之方向與依據。


Abstract
This study combines numerical simulation and experimental technique to investigate the cooling characteristic of a bracket-type heat-sink assembly for ensuring CPU operating under the critical temperature. At first, numerical visualizations on the thermal/fluid fields are used to justify the physical mechanisms inducing an excessive temperature rise. Then, several alternatives are proposed to enhance the cooling capacity of the heat sink assembly. They are the adjustment on heat-pipe arrangement to increase its contact opportunity with cooling airstream, and the addition of holes on fin surface to generate the possible heat/flow recirculation between two adjacent fin passages for a better convective heat transfer. Furthermore, two types of vortex generators (flow down and flow up) are evaluated and installed to create a longitudinally perturbed flow to increase the heat dissipation capability of bracket-type heat assembly.
As a result, with the appropriate heat-pipe arrangement, triangular holes, and location of vortex generators, the heat dissipation ability of bracket-type heat sink assembly is improved obviously. The CPU temperature is reduced from 349.2K to 346K and the thermal resistance of thermal module is improved from 0.274 to 0.252 K/W. Also, a more uniform temperature distribution is identified with the aids of longitudinal airflow generated by mounting the flow-up vortex generator. And the cooling capacity of heat sink assembly is enhanced since the fluid is guided to the heat-concentrated area when the flow-down vortex generators are adopted. Moreover, the optimum fin number (47) is found to decrease CPU temperature and thermal resistance further to 343.8K and 0.234 K/W, respectively.
Thereafter, considering the limitations of fan noise, the proper fan operating at 2,500RPM is selected to produce the fan performance (3.48 mm-Aq, 86.9 CFM). Also, the calculations on CPU temperature and thermal resistance are obtained as 326.61K and 0.123 K/W, which are correlated well with the experimental results (327.4K and 0.129 oC /W) . The error percentage between numerical and experimental results on the thermal resistance is 4.65% and on the CPU temperature is 0.8 oC. In conclusion, this rigorous and systematic design scheme for bracket-type heat sink assembly is successfully established for designing the new and effective thermal module.

目錄 中文摘要 I Abstract III 誌謝 V 目錄 VI 圖索引 X 表索引 XVI 符號索引 XIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 渦流產生器 12 1.2.2 熱對流 21 1.2.3 熱管 27 1.3 研究動機、方法與步驟 34 1.4 論文架構 40 第二章 物理模式與理論分析 45 2.1 熱傳遞原理與熱阻定義 45 2.2 強制對流下之垂直鰭片的散熱量估算 57 2.2.1 散熱鰭片性能探討 57 2.2.2 流體流動型態的判定 60 2.2.3 水平鰭片之熱傳量估算 65 2.2.4 最大熱傳量估算 74 2.3 散熱器前端入口速度計算 75 2.4 可靠度驗證 79 2.5 散熱器阻抗與風扇性能曲線 82 第三章 原始塔式散熱器之數值結果 93 3.1 數值模型之建構與網格劃分 93 3.1.1 物理模型介紹 94 3.1.2 數值模型建立 99 3.1.3 數值邊界條件 102 3.1.4 網格劃分與網格獨立性驗證 106 3.2 原始設計之塔式散熱器熱流分析 116 3.3 小結 126 第四章 改良型塔式散熱器的設計 129 4.1 熱管排列方式對塔式散熱器之影響 129 4.2 平板鰭片上方三角型開孔對塔式散熱器之影響 138 4.3 整合熱管排列與三角型開孔對塔式散熱器之影響 147 4.4 渦流產生器朝向之比較 148 4.4.1 使用Flow Up之渦流產生器 153 4.4.2 使用Flow Down之渦流產生器 159 4.5 小結 161 第五章 實驗規劃與設備 169 5.1 實驗環境與設備 169 5.1.1 風扇性能量測設備 170 5.1.2 散熱器性能量測設備與環境 178 5.2 實驗之建立 186 5.2.1 實驗之量測 186 5.2.2 實驗之結果 188 5.3 數值模擬與實驗驗證 194 5.4 熱管之熱傳導係數驗證 198 5.5 小結 207 第六章 新型塔式散熱器設計 209 6.1 渦流產生器擺放位置確認 210 6.1.1 渦流產生器夾角分析 210 6.1.2 渦流產生器與熱管間的距離分析 213 6.1.3 渦流產生器之間的間距分析 213 6.2 渦流產生器三角型開孔之較佳化設計 216 6.3 鰭片數量之較佳化設計與實驗驗證 225 6.4 風扇轉速對於散熱性能的影響 227 6.5 最佳化塔式散熱器的實驗與模擬驗證 230 6.6 小結 233 第七章 結論與建議 237 7.1 結論 237 7.2 建議 239 參考文獻 241 附錄A. 數值方法介紹 251 附錄B. 三角型開孔與渦流產生器尺寸介紹 269 附錄C. 恆溫恆濕箱規格介紹 271 作者簡介 273

參考文獻
[1] 劉建佳,”Pentium 4 散熱模組底板具突起物之散熱性能研究”,國立台灣科技大學機械工程學系碩士論文,中華民國90年。
[2] S. Y. Kim," Thermal Performance of Aluminum Foam Heat Sinks by Forced Air Cooling," IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, pp. 262-267, 2003.
[3] D. Q. Deng, L. Xu, and S. Q. Xu," Experimental investigation on the performance of air cooler under frosting conditions," Applied Thermal Engineering, Vol. 23, pp. 905-912, 2003.
[4] 王文耕,”電腦CPU散熱片造型對”鰭熱傳效果之影響”,國立成功大學機械工程學系碩士論文,中華民國92年。
[5] 吳兌倩,”流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程系碩士論文,中華民國93年。
[6] 劉立崗,”限制平面噴流衝擊於散熱座之熱流研究”,國立清華大學動力機械工程學系博士論文,中華民國93年。
[7] X. Yu, J. Feng, Q. Feng, and Q. Wang," Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink," Applied Thermal Engineering, Vol. 25, pp. 173-182, 2005.
[8] 蔡明璇,”平板型散熱片於橫流道冷卻之熱流特性研究”,私立華梵科技大學機電工程研究所碩士論文,中華民國94年。
[9] 許哲綸,”自然層流模式對垂直矩形散熱片用於發射單體之冷卻特性分析”,南台科技大學機械工程研究所碩士論文,中華民國94年。
[10] 周芳俊,”具限制出口多孔性散熱器熱傳特性研究”,國立中正大學機械工程研究所碩士論文,中華民國94年。
[11] 林芝佑,”空氣流動型態對長方型板鰭和正方形針鰭性能所造成的影響”,國立雲林科技大學機械工程系碩士論文,中華民國94年。
[12] 陳漢廷,”應用於電子構裝冷卻之各類型散熱座最佳化設計”,國立清華大學動力機械工程學系博士論文,中華民國94年。
[13] T. Icoz, N. Verma, and Y. Jaluria," Design of Air and Liquid Cooling Systems for Electronic Components Using Concurrent Simulation and Experiment," Transactions of the ASME, Vol. 128, pp. 466-478, 2006.
[14] T. M. Jeng, S. C. Tzeng, and Y. H. Hung,” An Analytical Study of local Thermal Equilibrium in Porous Heat Sinks Using Fin Theory,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 1907-1914, 2006.
[15] 林彥佑,”利用紅外線熱像量測技術於散熱器強制對流下之熱傳特性研究”,國立高雄應用科技大學模具工程學系碩士論文,中華民國95年。
[16] H. S. Han, S. Y. Kim, T. H. Ji, Y. J. Lee, D. Jee, K. S. Jang, and D. H. Oh," Heat Sink Design for a Thermoelectric Cooling System," 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, I-THERM, pp. 1222-1230, 2008.
[17] Q. Li, L. Chen, F. Wu, F. Gu, and D. Gu," Optimal energy-efficiency of a thermoacoustic cooler with a complex heat-transfer exponent," Applied Energy, Vol. 85, pp. 634-640, 2008.
[18] K. H. Lee and O. J. Kim," Simulation of the Cooling System Using Thermoelectric Micro-Coolers for Hot Spot Mitigation," International Conference on Thermoelectrics, ICT, Proceedings, pp. 279-282, 2007.
[19] X. B. Zhang, Z. H. Gan, L. M. Qiu, and H. X. Liu," Computational fluid dynamic simulation of an inter-phasing pulse tube cooler," Journal of Zhejiang University Science A, pp. 93-98, 2008.
[20] 洪振聰,"應用各種最佳化技術於完全限制狀況下高性能散熱座之散熱最佳化研究”,國立清華科技大學動力機械工程學系博士論文,中華民國97年。
[21] 吳調原,"應用散熱座與多孔性材質相似法則於散熱座性能之最佳性研究”,國立清華科技大學動力機械工程學系博士論文,中華民國97年。
[22] H. Peng and X. Ling," Experimental investigation on flow and heat transfer performance of a novel heat fin-plate radiator for electronic cooling," Heat Mass Transfer, Vol. 45, pp. 1575-1581, 2009.
[23] Y. W. Chang, C. C. Chang, M. T. Ke, and S. L. Chen," Thermoelectric air-cooling module for electronic devices," Applied Thermal Engineering, Vol. 29, pp. 2731-2737, 2009.
[24] H. C. Chiu, J. H. Jang, H. W. Yeh, and M. S. Wu," The heat transfer characteristics of liquid cooling heatsink containing microchannels," International Journal of Heat and Mass Transfer, Vol. 54, pp. 34-42, 2011.
[25] M. Fiebig, A. Valencia, and N. K. Mitra," Wing-Yype Vortex Generators for Fin- and- Tube Heat Exchangers," Experimental Thermal and Fluid Science, Vol. 7, pp.287-295, 1993.
[26] J. X. Zhu, M. Fiebig, and N. K. Mitra, "Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators," International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 495-501, 1995.
[27] M. C. Gentry and A. M. Jacobi, "Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate : Vortex Interactions with the Boundary Layer, " Experimental Thermal and Fluid Science, Vol. 14, pp.231-242,1997.
[28] Y. Chen, M. Fiebig, and N. K. Mitre, "Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet-parametric investigations of the winglet," International Journal of Heat and Mass Transfer, Vol. 41, pp.3961-3978, 1998.
[29] 黃漢生,"三角翼類型渦流產生器對加熱管內流場結構及熱傳效益之實驗研究,"私立淡江大學航空太空工程學系碩士論文,中華民國88年。
[30] 吳英豪,"具渦流產生器之高效率鰭管是熱交換器之研發,"國立成功大學機械工程系碩士論文,中華民國91年。
[31] 李嘉慶,"衝擊流中渦流產生器對熱傳及流場特性探討,"私立淡江大學航空太空學系碩士論文,中華民國91年。
[32] K. M. Kwak, K. Torii, and K. Nishino," Heat transfer and flow characteristics of fin- tube bundles with and without winglet-type vortex generators," Experiments in Fluid, Vol. 33, pp.696-702, 2002.
[33] F. Geraci, J. E. cooper, and M. Amprikidis," Development of Smart Vortex Generators," Smart Structures and Materials, proceedings of SPIE, Vol. 5056, pp. 1-8, 2003.
[34] S. D. Gao, L. B. Wang, Y. H. Zhang, and F. Ke," The Optimum Height of Winglet Vortex Generators Mounted on Tree-Row Flat Tube Bank Fin," Journal of Heat Transfer, Vol. 125, n. 6, pp. 1007-1016, Dec. 2003.
[35] 黃揚升,"強化式鈍體渦流產生器在微混合器中之混合特性,"國立成功大學航空太空工程學系碩士論文,中華民國94年。
[36] S. M. Pesteei, P. M. V. Subbarao, and R. S. Agarwal," Experimental study of the effect of winglet location on heat exchangers," Applied Thermal Engineering, Vol. 25, pp. 1684-1696, 2005.
[37] S. Chodee and T. Kiatsiriroat," Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 618-626, 2006.
[38] 吳信昌,"具渦流產生器之散熱鰭片實驗研究,"國立中央大學機械工程系碩士論文,中華民國96年。
[39] J. S. Leu, Y. H. Wu, and J. Y. Jang," Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators," Internal Journal of Heat and Mass Transfer, Vol. 47, pp. 4327-4338, 2007.
[40] 趙慧菁,"應用渦流產生器於電子元件散熱之研究,"私立華梵科技大學碩士論文,中華民國97年。
[41] J. M. Wu and W. Q. Tao,” Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: Verification of field synergy principle,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 1179-1191, 2008.
[42] J. M. Wu and W. Q. Tao,” Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part B: Parametric study of major influence factors,“ International Journal of Heat and Mass Transfer, Vol. 51, pp. 3683-3692, 2008.
[43] Mokrani, C. Castelain, and H. Peerhossaini,” Experimental study of the influence of the rows of vortex generators on turbulence structure in a tube,” Chemical Engineering and Processing Process Intensification, Vol. 48, pp.659-671, 2009.
[44] P. Chu, Y. L. He, Y. G. Lei, L. T. Tian and R. Li,” Three-dimensional numerical study on fin-and oval-tube heat exchanger with longitudinal vortex generators,” Applied Thermal Engineering, Vol. 29, pp. 859-876, 2009.
[45] T. Chompookham, C. Thianpong, S. Kwankaomeng, and P. Promvong,” Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators,” International Communications in Heat and Mass Transfer, Vol. 37, pp. 163-169, 2010.
[46] Jian Ma, Yan Ping Huang, Jun Huang, Yan Lin Wang, and Qiu Wang Wang,” Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel,” Nuclear Engineering and Design, Vol. 240, pp. 92-102, 2010.
[47] Lemouedda, M.Breuer, E. Franz, T. Botsch, and A. Delgado,” Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger,” International Journal of Heat and Mass Transfer, Vol. 53, pp. 5386-5399, 2010.
[48] P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong,” Enhancement heat transfer in a triangular ribbed channel with longitudinal vortex generators,” Energy Conversion and Management, Vol. 54, pp. 1242-1249, 2010.
[49] M. Henze and J. von Wolfersdorf,” Influence of approach flow conditions on heat transfer behind vortex generators,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 279-287, 2011.
[50] M. S. Aris, I. Qwen, and C. J. Sutcliffe,” The development of active vortex generators from shape alloys for the convective cooling of heated surface,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 3566-3574, 2011.
[51] C. Liu, J. T. Teng, J. C. Chu, Y. L. Chiu, S. Huang, T. Dang, R. Freif, and H. H. Pan,” Experimental investigations on liquid flow and heat transfer in rectangular channel with longitudinal vortex generators,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 3069-3080, 2011.
[52] H. G. Park and Morteza Gharib, " Experimental Study of Heat Convection From Stationary and Oscillating Circular Cylinder in Cross Flow", Journal of Heat Transfer, Vol.123, pp. 51-62, 2001.
[53] 劉張源,"應用於電子構裝冷卻之高性能冷板熱流特性研究",國立清華大學動力機械工程學系博士論文,中華民國92年。
[54] S, Baskaya, U. Erturhan, and M. Sivrioglu, " An experimental study on convection heat transfer from an array of discrete heat sources", International Communications in Heat and Mass Transfer, Vol. 32, pp. 248-257, 2004.
[55] J. C. Yu, Z. X. Li, and T. S. Zhao, " An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux", International Journal of Heat and Mass Transfer, Vol. 47, pp. 5297-5301, 2004.
[56] A. A. Kendoush and A. W. Izzat, " Experiments of fluid flow and heat convection in the wake of a disk facing a uniform stream", International Journal of Thermal Science, Vol. 43, pp. 255-264, 2004.
[57] A. Bar-Cohen and M. Jelinek, " Optimum Arrays of Longitudinal Rectangular Fins in Convection Heat Transfer", Heat transfer Engineering, Vol. 6, No. 3, pp. 68-78, 1995.
[58] L. Vollaro, S. Grignaffini, and F. Gugliermetti, " Optimum Design of Vertical Rectangular Fin Arrays", International Journal of Thermal Science, Vol. 38, pp. 525-529, 1999.
[59] 柯文旺,"多孔性介質中自然對流與強制對流熱質傳現象之研究",國立交通大學博士論文,中華民國89年。
[60] 白景傑,"三維凸出熱體之自然對流計算",國立成功大學航空太空工程研究所碩士論文,中華民國91年。
[61] M. Rahnama and M. Farhadi, "Effect of Radial Fins on Two-Dimensional Turbulent Natural Convection in a Horizontal Annulus", International Journal of Thermal Science, Vol. 43, pp. 255-264, 2004
[62] 曾永信,"鋸開孔之電路板設計於自然對流下墊子冷卻能力提升之研究",國立清華大學工程與系統科學所博士論文,中華民國96年。
[63] 沈季儒,"針狀鰭片陣列與水平板在自然對流下之散熱效能研究",國立清華大學動力機械工程學系碩士論文,中華民國97年。
[64] 陳志忠,"環狀鰭管式熱交換器圓鰭片上自然對流熱傳特性之探討",國立台南大學材料科學系碩士論文,中華民國97年。
[65] N. Hatami and M. Bahadorinejad, "Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater", Solar Energy, Vol. 82, pp. 903-910, 2008.
[66] E. Bilgen, "Conjugate heat transfer by conduction and natural convection on a heated vertical wall", Applied Thermal Engineering, Vol. 29, pp. 334-339, 2009.
[67] S. O, Atayilmaz and I. Teke, "Experimental and numerical study of the natural convection from a heated horizontal cylinder", International Communications in Heat and Mass Transfer, Vol. 36, pp. 731-738, 2009.
[68] 謝宛婷,"水平熱板上過渡性自然對流之熱傳研究",國立清華大學動力機械工程學系碩士論文,中華民國98年。
[69] 周文誠,"多孔性介質於垂直平板之薄膜蒸發及於底部加熱之封閉空間自然對流研究",國立成功大學機械工程學系碩士論文,中華民國98年。
[70] 李冠賢,"垂直放置鰭片之自然對流熱傳性能實驗研究",國立中央大學機械工程學系碩士論文,中華民國99年。
[71] S. L. Kei and L. M. Roop, "Effect of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages", IEEE Transfer Components, Hybirds Manufacture Technology, Vol. 12, No. 4,pp. 757-765, Dec. 1989.
[72] M. S. Mansuria and V. Kamath, "Optimization of a High-Performance Heat- Sink/Fan Assembly", ASME, Heat Transfer in Electronic Systems, Vol. 292, pp. 95-104, 1994.
[73] R. A. Wirtz, W. M. Chen, and R. H. Zhou, "Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks", ASME, Journal of Electronic Packaging, Vol. 116, pp. 206-211, 1997.
[74] 吳兌倩,"流線型鰭片散熱座數值與實驗之整合研究",國立台灣科技大學機械工程學系碩士論文,中華民國93年。
[75] 邱瓊琳,"應用場協同理論於受磁場作用下複雜波形渠道之強制對流熱傳特性分析",國立成功大學機械工程學系碩士論文,中華民國98年。
[76] 姜明宏,"氣冷式散熱片性能與熱流現象研究",私立華梵大學機電工程學系博士論文,中華民國98年。
[77] O. Turgut and N. Onur, "Three Dimensional numerical and experimental study of forced convection heat transfer on solar collector surface", International Communications in Heat and Mass Transfer, Vol. 36, pp. 274-279, 2009.
[78] G. Tanda and R, Abram, "Forced Convection Heat Transfer in Channels With Rib Turbulators Inclined at 45 deg", ASME, Journal of Turbo-machinery, Vol. 131, pp. 021012-1 - 021012-10, 2009.
[79] 蔡芳明,"高速衝擊噴流對於散熱片之熱傳分析",國立台南大學機電系統工程研究所碩士論文,中華民國99年。
[80] H. S. Yoon, J. H. Seo, and J. H. Kim, "Laminar forced convection heat transfer around two rotating side-by-side circular cylinder", International Journal of heat and Mass Transfer, Vol. 53, pp. 4525-4535, 2010.
[81] M. Mochizuki, ”Hinged Heat Pipes for Cooling Notebook PCs”, IEEE, SEMI-THERM XIII, pp. 64-72, 1997.
[82] Y. Cao, M. Gao, J. Beam, and B. Donovan, “Experiments and Analysis of Flat Miniature Heat Pipes”, AIAA Journal of Thermo-physics and Heat Transfer, Vol. 11, NO. 2, pp. 158-164, 1997.
[83] H. Xie, A. Ali, and R. Bhatia, “The Use of Heat Pipes in Personal Computers”, The Sixth Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 442-446, 1998.
[84] M. Oomi, T. Fukumoto, and J. Sotani, ”A Heat-Pipe System for a Desktop Computer”, Advances in Electronic Packaging, Vol. 2, pp. 1951-1955, 1999.
[85] 趙晏佑,”嵌入式熱管散熱效益之研究”,國立成功大學工程科學系碩士論文,中華民國88年。
[86] 賴衍村,”熱管散熱效益之研究”, 國立成功大學工程科學系碩士論文,中華民國89年。
[87] S. H. Moon, G. Hwang, H. G. Yun, T. G. Choy, and Y. I. Kang, “Improving thermal performance of miniature heat pipe for notebook PC cooling”, Microelectronics Reliability, Vol.42, pp. 135-140, 2002.
[88] L. Lin, R. Ponnappan, and J. Leland, “Heat performance miniature heat pipe”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 3131-3142, 2002.
[89] 王暉雄,”熱管散熱模組效能之探討”, 國立成功大學工程科學系碩士論文,中華民國91年。
[90] 陳旗正,”個人電腦交換式電源供應器之熱管散熱模組研製”, 國立成功大學工程科學系碩士論文,中華民國93年。
[91] 賈進強,”燒結式扁型熱管熱傳分析與實驗”,國立台灣海洋大學機械與機電工程學系碩士論文,中華民國94年。
[92] S. Lin, J. Broadbent, and R. McGlen, “Numerical study of heat pipe application in heat recovery systems”, Applied Thermal Engineering, Vol. 25, pp. 127-133, 2005.
[93] J. Legierski, B. Wiecek, and A. D. Mey, “Measurements and Simulations of Transient Characteristics of Heat Pipes”, Microelectronics Reliability, Vol. 46, pp. 109-115, 2006.
[94] 曾昭源,”折彎及壓扁後製程對燒結式熱管毛細結構之影響”,大同大學材料工程研究所碩士論文,中華民國96年。
[95] 施慶沂,”熱管在平板上之最佳佈置:熱阻模型之預測與數值分析”,國立成功大學機械工程學系碩士論文,中華民國96年。
[96] 許智穎,”燒結與溝槽式複合毛細結構微熱管之製造與實驗研究”,國立台灣科技大學機械工程學系碩士論文,中華民國97年。
[97] Y. W. Chang, C. H. Cheng, J. C. Wang, and S. L. Chen, “Heat pipe for cooling of electronic equipment”, Energy Conversion and Management, Vol. 49, pp. 3398-3404, 2008.
[98] 盧俊彰,”影響熱管最大熱傳量之參數設計與分析”,國立清華大學工程與系統科學研究所碩士論文,中華民國98年。
[99] X. Y. Lu, T. C. Hua, M. J. Liu, and Y. X. Cheng, “Thermal analysis of loop heat pipe used for high-power LED”, Thermochimica Acta, Vol. 493, pp. 25-29, 2009.
[100] W. Joung, T. Yu, and J. Lee, “Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe”, International Journal of Heat and Mass, Vol. 53, pp. 276-285, 2010.
[101] J. Li, D. Wang, and G. P. Peterson, “Experimental studies on a high performance compact loop heat pipe with a square flat evaporator”, Applied Thermal Engineering, Vol. 30, pp. 741-752, 2010.
[102] P. Naphon, “On the performance of air conditioner with heat pipe for cooling air in the condenser”, Energy Conversion and Management, Vol. 51, pp. 2362-2366, 2010.
[103] J. C. Wang, “L-type heat pipes application in electronic cooling system”, International Journal of Thermal Sciences, Vol. 50, pp. 97-105, 2011.
[104] X. Y. Lu, T. C. Hua, and Y. P. Wang, “Thermal analysis of high power LED package with heat pipe heat sink”, Microelectronics Journal, Vol. 42, pp. 1257-1262, 2011.
[105] Y. Zhao, T. Yan, and J. Liang, “Experimental study on a cryogenic loop heat pipe with high heat capacity”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 3304-3308, 2011.
[106] J. H. Lienhard IV, and J. H. Lienhard V, “ A Heat Transfer Textbook”, 3rd ed., Cambridge, Massachusetts, U.S.A., 2001.
[107] C. A. Latham, “ Thermal Resistance of Interface Materials as a Function of Pressure”, Electronic-Cooling, Vol.2, NO. 3, 1996.
[108] 陳逸凡,”螺栓接合面接觸熱阻與鋁蜂巢板熱傳特性之研究”,大葉大學機械工程學系碩士論文,中華民國91年。
[109] 王耀男,”利用逆算法配合實驗數據預測兩材料間之接觸熱阻”,國立成功大學機械工程學系碩士論文,中華民國92年。
[110] 張廷舜,”發泡鋁之螺栓接合面接觸熱阻與界面壓力之研究”,大葉大學機械工程學系碩士論文,中華民國93年。
[111] 胡東洲,”尺寸效應與界面熱阻對超晶格奈米線熱傳導之影響”,國立交通大學機械工程學系碩士論文,中華民國94年。
[112] 林智偉,”金屬薄膜間接觸熱阻暨試驗機研發之研究”,崑山科技大學機械工程系碩士論文,中華民國94年。
[113] 陳家寬,”純金屬薄膜及機械加工行為對界面接觸熱阻之研究”,崑山科技大學機械工程系碩士論文,中華民國96年。
[114] 賴信良,”陶瓷微粒錫基複合鍍層與金屬磨渡薄層對接觸熱阻之影響”,崑山科技大學機械工程學系碩士論文,中華民國97年。
[115] S. Lee, “Calculating Spreading Resistance in Heat Sinks”, Electronic-Cooling, Vol. 4, NO. 1, 1998.
[116] J. R. Culham, W. A. Khan, M. M. Yovanovich, and Y. S. Muzychka, “The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks”, ASME Journal of Electronic Packing, Vol. 129, pp. 76-81, 2007.
[117] 陳彥旭,”平板式熱管之散熱評估模式建立以及擴散熱阻分析”,國立清華大學工程與系統科學所博士論文,中華民國96年。
[118] 余宣緯,”在自然對流下之小尺寸材料擴散熱阻分析與量測”,逢甲大學機電系工程與工程碩士班碩士論文,中華民國98年。
[119] Yunus A. Cengel, “Heat Transfer A Practical Approach”, WCB/McGraw-Hill International Edition.
[120] Incropera DeWitt, “Fundamentals of Heat and Mass Transfer”, Wiley.
[121] S. Kakac and Y. Yener, “Convective Heat Transfer Second Edition”, CRC Press.
[122] Latif M. Jiji, “Heat Convection”, Springer.
[123] ANSI/AMCA Standard 210-99, Laboratory Method of Testing Fans for Aerodynamic Performance Rating”, Air Movement and Control Association, Inc., 1999.

QR CODE