簡易檢索 / 詳目顯示

研究生: 胡鑫斌
Xin-Bin Hu
論文名稱: 無鉛銲料與銅-鈦合金(C1990HP)固/固界面反應之研究
Solid-Solid Interfacial Reactions between Lead-free Solders and Cu-Ti Alloy(C1990HP)
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 朱瑾
Jinn P. Chu
高振宏
C Robert Kao
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 界面反應銅鈦合金介金屬化合物無鉛銲料
外文關鍵詞: interfacial reaction, Cu-Ti alloy, Intermetallic compound, Lead-free solder
相關次數: 點閱:292下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

銲料在電子構裝中扮演著相當重要的角色,主要使用於電子元件與其電路板之間的連接,並能傳遞其訊息。因先前文獻多半單獨研究無鉛銲料與Cu金屬之界面反應,為了與文獻研究相比較以及兼顧前瞻性,本研究致力於無鉛焊料 Sn, Sn-3 wt.%Ag- 0.5 wt.% Cu (SAC), Sn-0.7 wt.% Cu (SC)與 Cu-Ti合金(C1990HP)之固/固界面反應,C1990HP組成為Cu-(2.9-3.5)wt.%微量添加(2.9-3.5%)的Ti可以增加其合金的可銲性,同時C1990HP銅鈦合金具有強度高,可彎折性好的優點,具有與銅鈹合金相似的機械性質。研究中主要探討了固/固反應下界面中生成介金屬間化合物(intermetallic compound,IMC)的機制與生長動力學。
實驗方法為首先將Cu-Ti合金(C1990HP)與0.7g的Sn、SAC和SC焊料在240 ˚C下反應15s形成反應偶,再將反應偶分別置於125、150和175 ˚C的烘箱內,固/固反應100、200、500、1000、2000h,並利用光學顯微鏡(Opitcal Microscope, OM)、熱燈絲掃描電子顯微鏡(Scanning Electron Microscope, SEM)確認界面處所生成的介金屬相的顯微結構,另外使用能量散射光譜儀(Energy-dispersive X-ray spectroscopy, EDS)對界面處之介金屬相進行定性半定量分析,並利用電子探針顯微分析(Electron Probe Microanalyzer, EPMA)對介金屬相進行定量分析,確定各個介金屬相之組成。
在本實驗中發現Ti的添加抑制了Cu3Sn層的出現,並且促進了Cu¬¬6Sn5相的成長,同時在175 ˚C下C1990HP與Sn和SAC的反應中出現了非常不同的IMC成長現象。


Solder played a very important role in electronic packaging industry, commonly used for connected between electronic components or circuit board. Previous literatures usually focus on the interfacial reactions between lead-free solders and Cu-based alloys, in order to compared with previous literatures and forward looking, this research concentrated on the solid-solid interfacial reactions between three lead-free solders Sn, Sn-3wt.%Ag- 0.5wt.% Cu (SAC), Sn-0.7wt.% Cu (SC) and Cu-Ti alloy(C1990HP). The component of C1990HP is Cu-(2.9-3.5)wt.% Ti, a bit of added Ti can enhance the weldability of substrate, and the C1990HP has high strength and commendable mechanical property as same as Cu-Be alloy. In this research, the growth mechanism and growth dynamics of intermetallic compound(IMC) growth at interfacial of solid-solid reactions were studied.
We used C1990HP reaction with Sn, SAC and SC solders at 240˚C with 15s to form the reaction couples. Then, put the couples into oven with temperature of 125, 150 and 175˚C for 100, 200, 500, 1000 and 2000h solid-solid reaction. After reaction, we used OM(Optical Microscope) and SEM(Scanning Electron Microscope) to discuss the morphology of interfacial. And EDS(Energy-dispersive X-ray spectroscopy,) and EPMA(Electron Probe Microanalyzer) are ueds to comfirm the components of each intermetallic compounds.
The results shows that the added of Titanium inhibit the growth of Cu3Sn, meanwhile promote the growth of Cu6Sn5, and with the reaction temperature of 175 ˚C , the growth types of IMCs in Sn and SAC couples are very different with the Sn/Cu couples.

摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、前言 1 第二章、文獻回顧 3 2-1 電子購裝技術 3 2-1-1電子構裝技術簡介 3 2-1-2導線架與導線架封裝 5 2-2 無鉛銲料 6 2-2-1 純錫(Sn) 7 2-2-2 Sn-3.0wt.% Ag-0.5wt.% Cu (SAC) 8 2-2-3 Sn-0.7wt.% Cu (SC) 10 2-3 界面反應 11 2-3-1Sn/Cu界面反應 11 2-3-2 Sn-3.0wt.% Ag-0.5wt.% Cu/Cu 界面反應 13 2-3-3 Sn-0.7wt.% Cu/Cu 界面反應 15 2-4 界面反應動力學 17 2-4-1界面反應理論 17 2-4-2 擴散理論 19 第三章、實驗方法 21 3-1 C1990HP基材製備 21 3-2 銲料製備 21 3-3 反應偶製備 21 3-6 金相處理 22 3-5反應偶固/固界面反應 23 3-6 界面觀察和分析 23 第四章、結果與討論 26 4-1 Sn銲料與C1990HP基材固/固界面反應 26 4-1-1 Sn/C1990HP反應偶於125°C之固/固界面反應 26 4-1-2 Sn/C1990HP反應偶於150 °C之固/固界面反應 28 4-1-3 Sn/C1990HP反應偶於175°C之固/固界面反應 30 4-2 Sn-3.0Ag-0.5Cu銲料與C1990HP基材固/固界面反應 38 4-2-1 SAC/C1990HP反應偶於125°C之固/固界面反應 38 4-2-2 SAC/C1990HP反應偶於150°C之固/固界面反應 40 4-2-3 SAC/C1990HP反應偶於175°C之固/固界面反應 42 4-3 Sn-0.7Cu銲料與C1990HP基材固/固界面反應 47 4-3-1 SC/C1990HP反應偶於125°C之固/固界面反應 47 4-3-2 SC/C1990HP反應偶於150°C之固/固界面反應 49 4-3-3 SC/C1990HP反應偶於175°C之固/固界面反應 51 4-4 Sn,Sn-3.0Ag-0.5Cu,Sn-0.7Cu與C1990HP之固/固界面反應比較 56 4-5界面反應動力學 57 第五章、結論 60 第六章、參考文獻 61

[1] Li, Y. and C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Materials Science and Engineering: R: Reports, 2006. 51(1): p. 1-35.
[2] Abtew, M. and G. Selvaduray, Lead-free Solders in Microelectronics. Materials Science and Engineering: R: Reports, 2000. 27(5): p. 95-141.
[3] Napp, D. Lead free interconnect materials for the electronics industry. in Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'. 1995.
[4] “WEEE Regulations” EU-Directive 96/EC, 2002.
[5] “RoHS Regulations” EU-Directive 95/EC, 2002.
[6] Frear, D.R., The mechanical behavior of interconnect materials for electronic packaging. JOM, 1996. 48(5): p. 49-53.
[7] Kariya, Y. and M. Otsuka, Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys. Journal of Electronic Materials, 1998. 27(11): p. 1229-1235.
[8] Andersson, C., et al., Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders. Materials Science and Engineering: A, 2005. 394(1): p. 20-27.
[9] Lee, J.G., et al., Residual-mechanical behavior of thermomechanically fatigued Sn-Ag based solder joints. Journal of Electronic Materials, 2002. 31(9): p. 946-952.
[10] Nishikawa, H., J.Y. Piao, and T. Takemoto, Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate. Journal of Electronic Materials, 2006. 35(5): p. 1127-1132.
[11] Zeng, K., et al., Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. Journal of applied physics, 2005. 97(2): p. 024508.
[12] Vuorinen, V., et al., Solid-State Reactions between Cu(Ni) Alloys and Sn. Journal of Electronic Materials, 2007. 36: p. 1355-1362.
[13] Nishikawa, H., A. Komatsu, and T. Takemoto, Interfacial Reaction between Sn–Ag–Co Solder and Metals. MATERIALS TRANSACTIONS, 2005. 46(11): p. 2394-2399.
[14] Wang, Y.W., et al., Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. Journal of Alloys and Compounds, 2009. 478: p. 121-127.
[15] Yen, Y.-W., A.D. Laksono, and C.-Y. Yang, Investigation of the interfacial reactions between Sn-3.0 wt%Ag-0.5 wt%Cu solder and CuTi alloy (C1990HP). Microelectronics Reliability, 2019. 96: p. 29-36.
[16] Fu, W., et al., Effect of Ti content on the wetting behavior of Sn0.3Ag0.7Cu/AlN system. Materials & Design, 2017. 115: p. 1-7.
[17] Zhou, S., et al., Effects of Ti addition on the microstructure, mechanical properties and electrical resistivity of eutectic Sn58Bi alloy. Materials Science and Engineering: A, 2019. 744: p. 560-569.
[18] Chen, W.M., S.K. Kang, and C.R. Kao, Effects of Ti addition to Sn–Ag and Sn–Cu solders. Journal of Alloys and Compounds, 2012. 520: p. 244-249.
[19] Chuang, C.L., et al., Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder. Materials Science and Engineering: A, 2012. 558: p. 478-484.
[20] Lin, L.-W., et al., Alloying modification of Sn–Ag–Cu solders by manganese and titanium. Microelectronics Reliability, 2009. 49(3): p. 235-241.
[21] Anderson, I.E. and J.L. Harringa, Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints. Journal of Electronic Materials, 2006. 35(1): p. 94-106.
[22] Chung, D.D., Materials for electronic packaging. 1995: Elsevier.
[23] Rahim, K. and A. Mian, A Review on Laser Processing in Electronic and MEMS Packaging. Journal of Electronic Packaging, 2017. 139.
[24] https://www.practicalcomponents.com/home/print-view.cfm?type=pkg&prid=1020.
[25] Cheng, S., C.-M. Huang, and M. Pecht, A review of lead-free solders for electronics applications. Microelectronics Reliability, 2017. 75: p. 77-95.
[26] Dorso, L., et al., Long-term toxicity of 213Bi-labelled BSA in mice. PLoS One, 2016. 11(3): p. e0151330.
[27] Genchi, G., et al., The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 2020. 17(11): p. 3782.
[28] Cornelius, B., et al., The phenomenon of tin pest: A review. Microelectronics Reliability, 2017. 79: p. 175-192.
[29] Lewis, W.R., Notes on soldering. 1961: Tin Research Institute.
[30] Nogita, K., et al., Kinetics of the η–η′ transformation in Cu6Sn5. Scripta Materialia, 2011. 65(10): p. 922-925.
[31] Fürtauer, S., et al., The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics, 2013. 34: p. 142-147.
[32] Che, F., J. Luan, and X. Baraton. Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
[33] Che, F.X., et al., The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. Journal of Alloys and Compounds, 2010. 507(1): p. 215-224.
[34] Shnawah, D.A., M.F.M. Sabri, and I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectronics Reliability, 2012. 52(1): p. 90-99.
[35] Nimmo, K., Alloy selections. Lead-Free Soldering in Electronics—Science, Technology and Environmental Impact, 2004: p. 49-90.
[36] https://www.metallurgy.nist.gov/phase/solder/solder.html.
[37] Abd El-Rehim, A.F., H.Y. Zahran, and A.M. Yassin, Microstructure evolution and tensile creep behavior of Sn–0.7Cu lead-free solder reinforced with ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2019. 30(3): p. 2213-2223.
[38] Wang, H., et al., Improvement of Ga and Zn alloyed Sn–0.7Cu solder alloys and joints. Journal of Materials Science: Materials in Electronics, 2015. 26(6): p. 3589-3595.
[39] Koo, J., et al., Microstructural discovery of Al addition on Sn–0.5 Cu-based Pb-free solder design. Journal of Alloys and Compounds, 2015. 650: p. 106-115.
[40] Huang, H., et al., Effects of sulfur addition on the wettability and corrosion resistance of Sn-0.7Cu lead-free solder. Microelectronics Reliability, 2017. 74: p. 15-21.
[41] Rizvi, M.J., et al., Effect of adding 0.3wt% Ni into the Sn–0.7wt%Cu solder: Part I: Wetting behavior on Cu and Ni substrates. Journal of Alloys and Compounds, 2007. 438(1): p. 116-121.
[42] Li, J.F., P.A. Agyakwa, and C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Materialia, 2011. 59(3): p. 1198-1211.
[43] Hu, X. and Z. Ke, Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging. Journal of Materials Science: Materials in Electronics, 2014. 25(2): p. 936-945.
[44] Sobiech, M., et al., Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics. Journal of Materials Research, 2011. 26(12): p. 1482-1493.
[45] Yu, C.-Y., K.-J. Wang, and J.-G. Duh, Interfacial Reaction of Sn and Cu-xZn Substrates After Reflow and Thermal Aging. Journal of Electronic Materials, 2010. 39(2): p. 230-237.
[46] Bao, N., et al., Effects of thermal aging on growth behavior of interfacial intermetallic compound of dip soldered Sn/Cu joints. Journal of Materials Science: Materials in Electronics, 2018. 29(10): p. 8863-8875.
[47] Lee, L.M. and A.A. Mohamad, Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review. Advances in Materials Science and Engineering, 2013. 2013: p. 123697.
[48] Yu, D.Q. and L. Wang, The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction. Journal of Alloys and Compounds, 2008. 458(1): p. 542-547.
[49] Peng, W., E. Monlevade, and M.E. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu. Microelectronics Reliability, 2007. 47(12): p. 2161-2168.
[50] Tsao, L.C., Suppressing effect of 0.5wt.% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. Journal of Alloys and Compounds, 2011. 509(33): p. 8441-8448.
[51] Wang, F.-J., et al., Depressing effect of 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. Journal of Electronic Materials, 2006. 35(10): p. 1818-1824.
[52] Cho, M.G., et al., Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging. Journal of Electronic Materials, 2007. 36(11): p. 1501-1509.
[53] Lee, T.Y., et al., Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu. Journal of Materials Research, 2002. 17(2): p. 291-301.
[54] Yoon, J.-W., S.-W. Kim, and S.-B. Jung, Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. Journal of Alloys and Compounds, 2005. 391(1): p. 82-89.
[55] Lai, Y., et al., Interfacial microstructure evolution and shear strength of Sn0.7Cu–xNi/Cu solder joints. Journal of Materials Science: Materials in Electronics, 2018. 29(13): p. 11314-11324.
[56] Kim, D., et al., Formation and behavior of Kirkendall voids within intermetallic layers of solder joints. Journal of Materials Science: Materials in Electronics, 2011. 22(7): p. 703-716.
[57] Weinberg, K. and T. Bohme, Condensation and Growth of Kirkendall Voids in Intermetallic Compounds. IEEE Transactions on Components and Packaging Technologies, 2009. 32(3): p. 684-692.
[58] Mei, Z., et al. Kirkendall voids at Cu/solder interface and their effects on solder joint reliability. in Proceedings Electronic Components and Technology, 2005. ECTC '05. 2005.
[59] Andromeda, Interfacial Reaction Between Pb-free solder and Cu-Ti Alloy (C1990HP). 2017, 國立臺灣科技大學.
[60] Ho, C., S. Yang, and C. Kao, Interfacial reaction issues for lead-free electronic solders. Journal of Materials Science: Materials in Electronics, 2007. 18: p. 155-174.
[61] Hu, X., et al., Insights on interfacial IMCs growth and mechanical strength of asymmetrical Cu/SAC305/Cu-Co system. Vacuum, 2019. 167: p. 77-89.
[62] Li, H., et al., Effect of Cu grain size on the voiding propensity at the interface of SnAgCu/Cu solder joints. Materials Letters, 2015. 144: p. 97-99.
[63] Yu, D.Q., et al., The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction. Journal of Alloys and Compounds, 2005. 389(1): p. 153-158.
[64] Hu, X., Y. Li, and Z. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. Journal of Alloys and Compounds, 2014. 582: p. 341-347.
[65] Yoon, J.-W., et al., Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. Journal of Alloys and Compounds, 2009. 486(1): p. 142-147.

QR CODE