簡易檢索 / 詳目顯示

研究生: 簡宸熙
Chen-Hsi, Chien
論文名稱: 奈米氧化銅粒子嵌入咪錯酯骨架 以作為電催化劑
Synthesis of Copper Oxide-Embedded Zeolitic Imidazolate Framework Nanoparticles as Electrocatalyst
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 林昇佃
Shawn D Lin
江志強
Chih-Chiang, Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 43
中文關鍵詞: 電催化氧化反應、甲醇燃料、甲醇氧化氧化銅奈米顆粒、沸石咪錯骨架、多孔材料、氧化銅嵌入沸石咪錯骨架
外文關鍵詞: electro catalyst oxidation, methanol fuel cell
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

這份研究是在於將 氧化銅嵌入一種多孔的金屬有機框架 沸石咪錯骨架 。這種合成的方式在一般條件下即可合成,也就是二十度攝氏以及一大氣壓。藉由 X 光繞射分析儀、穿透式電子顯微鏡以及比表面積與 隙度分析儀可以確定氧化銅是嵌入多孔材料內的,而非只是黏在表面上。布拉晶格圖的兩個明顯的波峰共存以及孔隙度空間下降了百分之七十可以予以佐證。銅的奈米結構本身又是高結晶結構的。應用的部分選擇了氧化銅嵌入多孔材料的合體,當作甲醇氧化的電催化劑。循環伏安法以及電化學阻抗的測試都是在探討甲醇氧化的效率以及反應在電解液是由零點五體積濃度的氫氧化鈉以及一點零體積濃度的甲醇混合。藉由此電催化劑的加持,氧化效率與各方面的表現較一般金屬氧化物來的佳。再者,最常見的甲醇氧化催化劑就是 白金。比起白金,銅在價格上的優勢顯而易見。在使用氧化銅嵌入多孔材料當電催化劑後,最後一的電流密度為第一圈的兩倍還有剩。這不但證明此方法可行,也會激發其他金屬氧化物,像是氧化鋅或是氧化鐵,在未來燃料應用方面都可以
有更多發揮的空間。


CCopper oxide embedded zeolitic imidazolate framework (CuO@ZIF 8) is synthesized under normal temperature and pressure (NTP) condition (293K & 1atm). By testing through x ray diffraction (XRD), transmission electron microscopy and nitrogen adsorption desorption isotherm it is confirmed that the copper oxide (CuO) is embedded into the porous ZIF 8 material.
Brag peaks of both CuO and ZIF 8 peaks exist and the isotherm analyzation proved the porosity, although the pore size volume had a 70% decrease after CuO was embedded into ZIF 8. The copper nanoparticles itself is a highly crystalline structure. The methanol oxidation reaction (MOR) performance using CuO@ZIF 8 as an electrocatalyst was examined using electrochemical impedance spectroscopy and cyclic voltammetry with an electrolyte well mixed by 0.5M NaOH and 1M CH 3 OH. The electrocatalyst prepared in this work showed a better performance comparing to the bare transition metal oxides. However, using CuO is much cheaper and easier to prepare comparing to platinum, which is one of the most common electrocatalyst used for MOR process. By using CuO@ZIF 8 as an electrocatalyst, the current density after twenty cycles was 1.57 mA/cm 2 , which was more than two times higher comparing to the beginning cycle. It motivate s other metal oxide, such as iron oxide or zinc oxide, for the catalytic reactions and a promising idea in the fuel cell related application.

Chapter 1 General Introduction 1.1 I ntroduction ………………………………………………… …………………………………………………..…………………………………….1 1.2 Motivation and O bjective of this work…………… work…………………..……………………………………………….4 Chapter 2 Experimental Procedures 2.1 Research and D evelopment ……………………………………………………………………..……………………………….6 2.2 Materials ………………………………………………..………………………………………………………………..……………………………….6 2.3 Instruments 7 2.4 Synthesis and Preparation 2. 4.1 Synthesis of TOCNF ………………………………………………………………………………………………....…….8 2. 4 2 Synthesis of CuO NPs 10 2.4 .3 Synthesis of CuO@ZIF 8 11 2.4. 4 Electrochemical experiment ……………………………………………………………………..……………….1 1 2.4. 5 Synthesis of CuO @ZIF 8 …………………………………………………………………………..……………….11 2.4.6 Electrochemical Experiment ……………………………………………………………………..……………….11 Chapter 3 Results and Discussion 3.1 Characterizations 3.1. 1 Characterization with TEM 1 3 3.1. 2 Characterization with XRD ………………………………………………………………………………………….16 3.1. 3 Characterization with N 2 adsorption desorption isotherm …………………….18 3.2 Electrocatalyst Performances 3.2.1 Electrochemical Methanol Oxidation 2 1 3.2.2 Energy transfer in electrode ( EIS)………………………………………………………………………….2 6 Chapter 4 Conclusion Future Perspective 29 Reference ………………………………………………………………………………………………………………………………......……..…….3 1

[1] Principles and mechanisms of dye degradation based photocatalysts A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4 (2014)
[2] Applications on structured porous materials from energy storage and conversion,
catalysis, photocatalysis, adsor ption, separation, and sensing to biomedicine
M. H. Sun, L. H. Chen, Y. Li, X. Y. Yang, Z. Y. Yuan, (2016)
[3] Facile Synthesis Supported Metal Organic Framework Nanocomposite for
Adsorptive Removal of Methyl Orange Dye A. Chakraborty, H. Acharya, (2018)
[4] D evelopment of Novel Photocatalyst and Cocatalyst Materials for Water K. Maeda, K. Domen (2016)
[5] High Efficiency Cocatalyst for Enhancing the Photocatalytic Hydrogen
Generation J. Fu, J. Yu, C. Jiang (2017)
[6] M icrowave assisted synthesis of reduced graphene oxide incorporated
MOF derived ZnO composites for photocatalytic application S. Rehman, R. Ullah, A.M. Butt, (2009)
[7] Highly Efficient Nano-ZSM-5 Catalyst for Electrochemical Oxidation of Methanol. Kaur, B.; Srivastava, R.; Satpati, (2016)
[8] Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation. Electrochimical Mehek, R.; Iqbal, N.; Noor, T.; Nasir, H.; Ahmed, S., Acta (2017)
[9] Copper Oxide Nanoparticles with Synthesis and Characterization Himanshu Narayan, Hailemicheal Alemu, Lineo F. Maxakaza , Sandesh Jaybhaye (2018)
[10] Apparatus for dosing liquid water in ultrahigh vacuum H. Hoster, T. Iwasita, H. Baumga¨rtner, W. Vielstich, Phys. Chem.Phys. 3 (2001)
[11] Electrochemical Biological Sensors Based on Directly Synthesized
Carbon Nanotube Electrodes J. Okuno, K. Maehashi, K. Matsumoto, K. Kerman (2007)
[12] Dendrimer functionalized electrospun nanofibres as dual action water
treatment membranes J. Ledesma-Garcia, I. L. Escalante Garcia, F. J. Rodriguez, (2008)
32
[13] Toward the development of smart and low cost pointToward the development of smart and low cost point--ofof--care biosensors care biosensors based on screen printed electrodesbased on screen printed electrodesM. U. Ahmed, M. M. Hossain (2008)
[14] Enhanced platinum utilization efficiency as an electrocatalyst in polymer Enhanced platinum utilization efficiency as an electrocatalyst in polymer electrolyte membrane fuel cells electrolyte membrane fuel cells M. Okamoto, T. Fujigaya and N. Nakashima, Fuel Cells, (2009)
[15] NanomaterialNanomaterial--based biosensors for biological monitoring of based biosensors for biological monitoring of organophosphorus pesticidorganophosphorus pesticideses W. Lin, F. Lu and J. Wang, Electroanalysis ( 2004)
[16] StructureStructure––Activity Relationships of Hierarchical MesoActivity Relationships of Hierarchical Meso––Macroporous Macroporous Alumina Supported Copper Catalysts for Effects of Calcination Temperature of Alumina Supported Copper Catalysts for Effects of Calcination Temperature of Alumina Support Alumina Support G. Liu, S. L. Riechers, M. C. Mellen and Y. Lin, Electrochem (2006)
[17] Catalytic Hydrogenation of COCatalytic Hydrogenation of CO22 to Methanol: Study of Synergistic Effect to Methanol: Study of Synergistic Effect on Adsorption Properties of COon Adsorption Properties of CO22 Sloczyński J, Grabowski R, Kozlowska A, Olszewski PK, Stoch J (2003)
[18] Facile one-pot synthesis of CuO nanosheet for application as electrocatalyst for methanol oxidation Anu Prathap M. Udayan, Shilpa N. Sawant (2006)
[19] S. H. Lee, K. Teshima, I. Y. Jang, Y. Sonobayashi, and S. Oishi, Fuel Cells, (2010)
[20]
[20] Schejn, A. Schejn, A. et al. et al. Controlling ZIFControlling ZIF--8 nano8 nano-- and microcrystal formation and and microcrystal formation and reactivity through zinc salt variations. reactivity through zinc salt variations. CrystEngComm CrystEngComm 1616, (2014)., (2014).
[21]
[21] Meilikhov, M. Meilikhov, M. et al. et al. MetalsMetals @@ MOFs MOFs -- Loading MOFs with metal Loading MOFs with metal nanoparticles for hybrid functions. (2010).nanoparticles for hybrid functions. (2010).
[22]
[22] Shioyama, H. Shioyama, H. ImmobilizImmobilizing Highly Catalytically Active ing Highly Catalytically Active Nanoparticles inside Nanoparticles inside the Pores of Metal−Organic Framework.pdf. (2012).the Pores of Metal−Organic Framework.pdf. (2012).
[23] Rahul Banerjee, Anh Phan, Bo Wang, Carolyn Knobler, H. F. &Michael
[23] Rahul Banerjee, Anh Phan, Bo Wang, Carolyn Knobler, H. F. &Michael O’Keeffe, O. M. Y. HighO’Keeffe, O. M. Y. High--Throughput Synthesis of Zeolitic. Throughput Synthesis of Zeolitic. Science Science (2008)(2008)..
[24] Wiebcke, M.
[24] Wiebcke, M. et al. et al. Rapid RoomRapid Room--Temperature Synthesis and Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Framework. Chem. Mater.Chem. Mater. (2009).(2009).

無法下載圖示 全文公開日期 2026/07/26 (校內網路)
全文公開日期 2026/07/26 (校外網路)
全文公開日期 2031/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE