簡易檢索 / 詳目顯示

研究生: 楊悅婷
Yue-Ting Yang
論文名稱: 以二氧化鈦修飾碳載白金氧氣還原觸媒提升耐甲醇性能
Carbon-supported Pt decorated by titanium dioxide for methanol-tolerant oxygen-reduction catalysts
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 林昇佃
Shawn D. Lin
王丞浩
Chen-Hao Wang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 137
中文關鍵詞: 燃料電池陰極觸媒二氧化鈦氧還原反應抑制甲醇氧化反應奈米材料直接甲醇燃料電池表面修飾氧缺陷商業白金
外文關鍵詞: Fuel cell, Cathode catalyst, Titanium dioxide(TiO2), Oxygen reduction reaction(ORR), Methanol –tolerant, Nanomaterial, Direct methanol fuel cell(DMFCs), Modification of surface, Oxygen vacancy, Platinum on carbon(JM)
相關次數: 點閱:383下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在直接甲醇燃料電池中,陽極的甲醇容易透過質子交換膜擴散到達陰極。這些甲醇會在陰極的白金觸媒上氧化產生一氧化碳和混合電流,因而大幅降低燃料電池的性能。基於此,我們希望通過二氧化鈦修飾白金觸媒來形成一結構上的屏障,降低甲醇分子的影響和阻止甲醇分子的反應,從而提升白金觸媒在氧氣還原反應中的抗甲醇性能。在白金觸媒的乙醇溶液中,加入適量鈦酸四丁酯,再通入水蒸氣緩慢水解和微波熱處理分解,可控制二氧化鈦成長於白金表面。各種測試顯示二氧化鈦的尺寸約爲奈米級,並且表面存在大量的氧缺陷,但只會對白金觸媒有些微的電子和幾何結構的影響。電化學測試表明這些奈米二化氧鈦的修飾能夠顯著提升白金觸媒的抗甲醇性能。


    In direct methanol fuel cells, the methanol in anode easily through the proton exchange membrane to reach the cathode. This methanol will oxidize on the surface of platinum and produce carbon monoxide and a mixed potential that will reduce the efficiency. Based on above reasons, it is envisaged to deposit TiO2 nanoparticles on Pt catalyst. By creating purposed steric disturbance to the diffusion of large molecules like methanol in the proximity of Pt surface, it is expected to enhance the methanol- tolerance ability of Pt/C on cathode. Deposition and modification of titanium dioxide on Pt/C were achieved by slow hydrolysis of tetrabutyl titanate and microwave-assisted synthesis. Experimental results showed that TiO2 nanoparticles were deposited on the Pt surface successfully. Oxygen vacancies were shown on the titanium dioxide surface and the presence of such kind of defects was found beneficial in adsorbing methanol molecules. Although the interaction between TiO2 and Pt was not found prominent, electrochemical tests demonstrated that depositing Pt surface with TiO2 nanoparticles can effectively enhance the methanol-tolerance ability of platinum.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 XV 第一章 緒論 1 1.1 燃料電池的發展簡介 2 1.2 燃料電池的種類 6 1.3質子交換薄膜型燃料電池 7 1.4 直接甲醇燃料電池 9 1.4.1 直接甲醇燃料電池之電化學原理 10 1.4.2直接甲醇燃料電池所面臨之瓶頸與發展方向 13 1.4.3 DMFC 之陰極材料及其反應機制 14 1.5氧氣還原反應 15 1.5.1 氧氣吸附模式 17 1.6研究目的與方法 20 第二章 文獻回顧 21 2.1 二氧化鈦 21 2.1.1 二氧化鈦應用於能源材料 23 2.1.1.1載體(support) 23 2.1.1.2修飾物(modifier) 27 2.2直接甲醇燃料電池 30 2.2.1抑制甲醇氧化反應 32 第三章 實驗設備與方法 35 3.1實驗設備 35 3.2 實驗藥品 36 3.3 實驗步驟 37 3.3.2電化學漿料與電極的製備 42 3.4儀器原理與材料鑑定 43 3.4.1 X-ray繞射儀(XRD) 43 3.4.2 穿透式電子顯微鏡(TEM) 44 3.4.3庫倫水分測定儀 45 3.4.4 X-ray absorption spectroscopy(XAS) 46 3.4.5 電化學分析方法 46 3.4.6 CO電催化氧化分析(CO stripping) 47 3.4.7 甲醇電催化氧化分析 47 3.4.8 電化學活性表面積計算 47 3.4.9 X光光電子能譜儀 48 3.4.10傅立葉轉換紅外線光譜儀 50 第四章 實驗結果和討論 52 4.1 TiO2-Pt/C的合成原理 52 4.1.1負載TiO2之合成變因 57 4.1.1.1鈦酸四丁酯水解速率 57 4.1.1.2合成實驗裝置調整 58 4.1.1.3鉑與二氧化鈦的溫度和比例的影響 61 4.1.1.4直接覆蓋TiO2薄膜之影響 69 4.1.1.5添加尿素的影響 71 4.1.1.6烘乾程度之影響 73 4.1.1.7分散溶劑的影響 75 4.2 TiO2-Pt/C上的形貌 80 4.3 TiO2-Pt/C中TiO2的結構 86 4.4 TiO2-Pt/C中TiO2表面吸附效應 94 4.5 TiO2-Pt/C中TiO2對Pt結構的影響 97 4.6 TiO2-Pt/C中TiO2對Pt的電化學性質影響 99 4.7 TiO2-Pt/C的電化學測試 100 第五章 結論 105

    1. 衣寶廉, 燃料電池. 五南圖書出版公司.
    2. 黃鎮江, 燃料電池. 全華科技圖書股份有限公司.
    3. Grove, W.R., Philos .Mag, 1839. Ser.3(14): p. 127.
    4. 吳滄琪, 磺酸化高分子於燃料電池質子交換膜製備之應用. 2003: 元智大學化工系.
    5. Rastler, D., Opportunities and challenges for fixel cells in the evolving energy enterprise. Fuel Cells Bulletin, 2000. 3(19): p. 7-11.
    6. Ledjeff-Hey, K. and A. Heinzel, Critical issues and future prospects for solid polymer fuel cells. Journal of Power Sources, 1996. 61(1): p. 125-127.
    7. Gouerec, P., et al., High Energy Ballmilled Pt‐Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO. Journal of The Electrochemical Society, 2000. 147(11): p. 3989-3996.
    8. Appleby, A.J. and F.R. Foulkes, Fuel cell handbook. New York, 1988. 18.
    9. WATKINS, D.S. and L.J.M.J. BLOMEN, Fuel Cell Systems. 1993, New York: Plenum Press. 493.
    10. Heinzel, A., et al., Membrane fuel cells—concepts and system design. Electrochimica Acta, 1998. 43(24): p. 3817-3820.
    11. Surampudi, S., et al., Advances in direct oxidation methanol fuel cells. Journal of Power Sources, 1994. 47(3): p. 377-385.
    12. Hogarth, M.P. and G.A. Hards, Direct methanol fuel cells. Platinum Metals Review, 1996. 40(4): p. 150-159.
    13. 董士平, 含磷矽酸鹽玻璃於直接甲醇燃料電池之應用. 2006: 台灣科技大學化工系.
    14. 曾育貞, 改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究. 2006: 台灣科技大學化工系.
    15. Shim, J., D.Y. Yoo, and J.S. Lee, Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000. 45(12): p. 1943-1951.
    16. 陳竣明, 直接甲醇燃料電池陽極奈米合金觸媒之製備與鑑定. 2004: 台灣科技大學化工系.
    17. Jarvi, T.D. and E.M. Stuve, Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces. 1998, New York: Wiley-VCH.
    18. Wroblowa, H.S. and G. Razumney, Electroreduction of oxygen: A new mechanistic criterion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976. 69(2): p. 195-201.
    19. Wroblowa, H.S., P. Yen Chi, and G. Razumney, Electroreduction of oxygen. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976. 69(2): p. 195-201.
    20. Zhang, J., PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. 2008: Springer Science & Business Media.
    21. Kinoshita, K., Oxygen electrochemical technology. Vol. 30. 1992: John Wiley & Sons.
    22. Kraeutler, B. and A.J. Bard, Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. Journal of the American Chemical Society, 1978. 100(13): p. 4317-4318.
    23. Eschemann, T.O., J.H. Bitter, and K.P. De Jong, Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis. Catalysis today, 2014. 228: p. 89-95.
    24. Mor, G.K., et al., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano letters, 2006. 6(2): p. 215-218.
    25. D'Agata, A., et al., Enhanced toxicity of ‘bulk'titanium dioxide compared to ‘fresh'and ‘aged'nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology, 2014. 8(5): p. 549-558.
    26. Guo, Y.G., et al., Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Advanced Materials, 2007. 19(16): p. 2087-2091.
    27. Xu, J., et al., Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014. 260: p. 233-242.
    28. Chen, M.M., et al., Anatase-TiO 2 nanocoating of Li 4 Ti 5 O 12 nanorod anode for lithium-ion batteries. Journal of Alloys and Compounds, 2014. 601: p. 38-42.
    29. Fujimoto, M., et al., Ti O 2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 2006. 89(22): p. 223509.
    30. Grosso, D., et al., Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 C. Chemistry of Materials, 2003. 15(24): p. 4562-4570.
    31. Nießen, T.E., et al., Synthesis and characterisation of titanium-containing MCM-41 using (NH 4) 3 [Ti (O 2) F 5] as the titanium source. Microporous and mesoporous materials, 1998. 21(1): p. 67-74.
    32. Kominami, H., et al., Novel synthesis of microcrystalline titanium (IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium (IV) alkoxide in organic solvents. Catalysis Letters, 1997. 46(3): p. 235-240.
    33. Bagheri, S., K. Shameli, and S.B. Abd Hamid, Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method. Journal of Chemistry, 2012. 2013.
    34. Palcheva, R., et al., TiO 2 nanotubes supported NiW hydrodesulphurization catalysts: characterization and activity. Applied Surface Science, 2013. 265: p. 309-316.
    35. Liang, G., et al., The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2014. 309: p. 468-476.
    36. Luo, Q., M. Beller, and H. Jiao, Formic acid dehydrogenation on surfaces—a review of computational aspect. Journal of Theoretical and Computational Chemistry, 2013. 12(7): p. 1330001.
    37. Kominami, H., et al., Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents. Catalysis Letters, 1997. 46(3): p. 235-240.
    38. Liang, G., et al., The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2014. 309: p. 468-476.
    39. Wang, X., et al., Quantitating the Lattice Strain Dependence of Monolayer Pt Shell Activity toward Oxygen Reduction. Journal of the American Chemical Society Article, 2013. 135(16): p. 5938-5941.
    40. Si, L., et al., Facile preparation of Ti 3+ self-doped TiO 2 nanosheets with dominant {001} facets using zinc powder as reductant. Journal of Alloys and Compounds, 2014. 601: p. 88-93.
    41. Muhd Julkapli, N., S. Bagheri, and S. Bee Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014. 2014.
    42. Sui, X.L., et al., Investigation on C–TiO 2 nanotubes composite as Pt catalyst support for methanol electrooxidation. Journal of Power Sources, 2014. 255: p. 43-51.
    43. Bamwenda, G.R., et al., The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO 2 for CO oxidation. Catalysis Letters, 1997. 44(1): p. 83-87.
    44. Tauster, S.J., et al., Strong interactions in supported-metal catalysts. Science, 1981. 211(4487): p. 1121-1125.
    45. Kim, T.S., et al., Cryogenic CO oxidation on TiO2-supported gold nanoclusters precovered with atomic oxygen. Journal of the American Chemical Society, 2003. 125(8): p. 2018-2019.
    46. Shao, Y., et al., Novel catalyst support materials for PEM fuel cells: current status and future prospects. Journal of Materials Chemistry, 2009. 19(1): p. 46-59.
    47. Lietti, L., P. Forzatti, and F. Bregani, Steady-State and Transient Reactivity Study of TiO2-Supported V2O5− WO3 De-NO x Catalysts: Relevance of the Vanadium− Tungsten Interaction on the Catalytic Activity. Industrial & engineering chemistry research, 1996. 35(11): p. 3884-3892.
    48. Lin, S.D., M. Bollinger, and M.A. Vannice, Low temperature CO oxidation over Au/TiO 2 and Au/SiO 2 catalysts. Catalysis Letters, 1993. 17(3-4): p. 245-262.
    49. Amores, J.M.G. and V.S. Escribano, Anatase crystal growth and phase transformation to rutile in high-area TiO 2, MoO 3–TiO 2 and other TiO 2-supported oxide catalytic systems. Journal of Materials Chemistry, 1995. 5(8): p. 1245-1249.
    50. Yan, W., et al., Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. Journal of the American Chemical Society, 2005. 127(30): p. 10480-10481.
    51. Ren, X., H. Zhang, and Z. Cui, Acetylene decomposition to helical carbon nanofibers over supported copper catalysts. Materials Research Bulletin, 2007. 42(12): p. 2202-2210.
    52. Park, K.W. and K.S. Seol, Nb-TiO 2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007. 9(9): p. 2256-2260.
    53. Yan, W., et al., Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. The Journal of Physical Chemistry B, 2005. 109(21): p. 10676-10685.
    54. Went, G.T., L.J. Leu, and A.T. Bell, Quantitative structural analysis of dispersed vanadia species in TiO2 (anatase)-supported V2O5. Journal of Catalysis, 1992. 134(2): p. 479-491.
    55. Francisco, M.S.P. and V.R. Mastelaro, Inhibition of the anatase− rutile phase transformation with addition of CeO2 to CuO− TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 2002. 14(6): p. 2514-2518.
    56. Kuriganova, A.B., et al., Electrochemically synthesized Pt/TiO 2-C catalysts for direct methanol fuel cell applications. Mendeleev Communications, 2017. 27(1): p. 67-69.
    57. Wu., Y.C., Preparation of highly conductive TiO2 supported Pt catalyst and its electrochemical performance. 2014: 台科大碩士論文

    58. Chung, S., et al., Atomic layer deposition of ultrathin layered TiO 2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells. Journal of Energy Chemistry, 2016. 25(2): p. 258-264.
    59. Elezovic, N.R., et al., Synthesis and characterization of MoO x-Pt/C and TiO x-Pt/C nano-catalysts for oxygen reduction. Electrochimica Acta, 2009. 54(9): p. 2404-2409.
    60. Xi, J., et al., Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles. Chemical Communications, 2007(16): p. 1656-1658.
    61. Yang, Z. and N. Nakashima, A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum. Scientific reports, 2015. 5.
    62. Feng, Y., et al., Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Scientific Reports, 2015. 5.
    63. Akalework, N.G., et al., Ultrathin TiO 2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012. 22(39): p. 20977-20985.
    64. Ruiz-Camacho, B., et al., Pt/C and Pt/TiO 2–C electrocatalysts prepared by chemical vapor deposition with high tolerance to alcohols in oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2014. 725: p. 19-24.
    65. Lamy, C., et al., Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 2002. 105(2): p. 283-296.
    66. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997. 38(4): p. 445-457.
    67. Reddington, E., et al., Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998. 280(5370): p. 1735-1737.
    68. Heinzel, A. and V.M. Barragan, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 1999. 84(1): p. 70-74.
    69. Cruickshank, J. and K. Scott, The degree and effect of methanol crossover in the direct methanol fuel cell. Journal of Power Sources, 1998. 70(1): p. 40-47.
    70. Ramya, K. and K.S. Dhathathreyan, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane. Journal of Electroanalytical Chemistry, 2003. 542: p. 109-115.
    71. Gottesfeld, S. and T.A. Zawodzinski, Polymer electrolyte fuel cells. Advances in electrochemical science and engineering, 1997. 5: p. 195-302.
    72. Nørskov, J.K., et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892.
    73. Bagotzky, V.S., Y.B. Vassiliev, and O.A. Khazova, Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 81(2): p. 229-238.
    74. Parsons, R. and T. VanderNoot, The oxidation of small organic molecules: A survey of recent fuel cell related research. Journal of electroanalytical chemistry and interfacial electrochemistry, 1988. 257(1-2): p. 9-45.
    75. Wasmus, S. and A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, 1999. 461(1): p. 14-31.
    76. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002. 47(22): p. 3663-3674.
    77. Iwasita, T. and W. Vielstich, On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions. Journal of electroanalytical chemistry and interfacial electrochemistry, 1986. 201(2): p. 403-408.
    78. Korzeniewski, C. and C.L. Childers, Formaldehyde yields from methanol electrochemical oxidation on platinum. The Journal of Physical Chemistry B, 1998. 102(3): p. 489-492.
    79. Ota, K.I., Y. Nakagawa, and M. Takahashi, Reaction products of anodic oxidation of methanol in sulfuric acid solution. Journal of electroanalytical chemistry and interfacial electrochemistry, 1984. 179(1-2): p. 179-186.
    80. Jusys, Z., J. Kaiser, and R. Behm, Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—: A DEMS study. Electrochimica Acta, 2002. 47(22): p. 3693-3706.
    81. Gurau, B. and E.S. Smotkin, Methanol crossover in direct methanol fuel cells: a link between power and energy density. Journal of Power Sources, 2002. 112(2): p. 339-352.
    82. Bron, M., et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. Journal of Electroanalytical Chemistry, 2001. 500(1): p. 510-517.
    83. Reeve, R.W., et al., Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation. Electrochimica Acta, 2000. 45(25): p. 4237-4250.
    84. Schmidt, T.J., et al., Oxygen reduction on Ru1. 92Mo0. 08SeO4, Ru/carbon, and Pt/carbon in pure and methanol‐containing electrolytes. Journal of The Electrochemical Society, 2000. 147(7): p. 2620-2624.
    85. Jiang, R. and D. Chu, Remarkably active catalysts for the electroreduction of O 2 to H 2 O for use in an acidic electrolyte containing concentrated methanol. Journal of the Electrochemical Society, 2000. 147(12): p. 4605-4609.
    86. Convert, P., et al., Electrodes modified by electrodeposition of CoTAA complexes as selective oxygen cathodes in a direct methanol fuel cell. Journal of applied electrochemistry, 2001. 31(9): p. 945-952.
    87. Maillard, F., et al., Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochimica Acta, 2002. 47(21): p. 3431-3440.
    88. Shukla, A.K., et al., Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2004. 563(2): p. 181-190.
    89. Neergat, M., A.K. Shukla, and K.S. Gandhi, Platinum-based alloys as oxygen–reduction catalysts for solid–polymer–electrolyte direct methanol fuel cells. Journal of applied electrochemistry, 2001. 31(4): p. 373-378.
    90. Shukla, A.K., et al., An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2001. 504(1): p. 111-119.
    91. Antolini, E., et al., Carbon supported Pt–Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. Journal of Applied Electrochemistry, 2006. 36(3): p. 355-362.
    92. Watanabe, M.A. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. . Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
    93. Radmilovic, V., H.A. Gasteiger, and P.N. Ross, Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. . Journal of Catalysis, 1995. 154(1): p. 98-106.
    94. Schmidt, T.J., et al., Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358.
    95. Wang, X.M., et al., Fundamental studies on the synthesis of supported metal nanoparticles: steric hindrance and coordination effects of anionic stabilizers. Journal of Materials Chemistry, 2012. 22(30): p. 15418–15426.

    QR CODE