簡易檢索 / 詳目顯示

研究生: 朱元翰
Yuan-Han Chu
論文名稱: 雙金屬(鈦、釕)氧化物載體承載白金觸媒及其電化學活性之探討
Research on TixRu1-xO2 bimetal oxides supported Pt catalysts and their electrochemical activities
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
楊明長
Ming-Chang Yang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 173
中文關鍵詞: 雙金屬氧化物X光吸收光譜直接甲醇燃料電池氧缺陷
外文關鍵詞: Bimetallic oxides, X-ray absorption spectrum, Direct methanol fuel cell, oxygen vacancy
相關次數: 點閱:340下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗室發展之低溫水熱法製備奈米級雙金屬氧化物(鈦、釕),並以其為白金觸媒之載體。將探討氧化鈦晶相(銳鈦礦及金紅石結構),載體熱處理及不同鈦與釕合成比例之金屬氧化物之奈米結構;接著再將白金觸媒沉積於其上,瞭解金屬氧化物結構對白金觸媒結構之影響,並將其應用在甲醇氧化與氧氣還原電催化反應上。
    研究結果指出以銳鈦礦結構之二氧化鈦為載體之觸媒有較佳電催化活性;在以不同鈦與釕合成比例之金屬氧化物中為載體之觸媒中,以20%Pt/Ti0.7Ru0.3O2具有最佳之電催化活性(MOR:最大電流密度 103 mA/cm2、起始電位0.49; ORR: 最大電流密度4.1 mA/cm2、起始電位0.79),可歸因於載體具有較高之表面積與較佳之白金電子結構;由吸收光譜技術及理論計算模擬證實載體氧缺陷之形成將修飾白金電子結構而有助於提升電催化能力。在電極漿料製備工程上,以添加15 wt% 碳為助導劑之20%Pt/Ti0.7Ru0.3O2具有最佳之甲醇氧化及氧氣還原電催化能力。電化學穩定性測試顯示以雙金屬氧化物(TixRu1-xO2)為載體之觸媒相對於以傳統碳為載體之觸媒有較佳的電催化穩定性及抗腐蝕能力。


    Abstract
    This research adopts the developed low temperature hydrothermal method to synthesize nano-sized Ru-doped TiO2 bimetallic oxides, and emplyed as support for Pt catalyst. First, the nano structure of different phase of metal oxides (Anatse or Rutile), heat treatment effect and effect of Ti to Ru ratios were examined. The Pt catalyst was then deposited onto the bimetal oxide supports by ethylene glycol reduction method and the effect of bimetallic oxide supports on the nanostructure of Pt catalyst was further investigated. Finally, the catalysts were applied in the electrochemical methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR).
    The results indicate that Anatase TiO2 supported Pt catalysts has better electrochemical activity compared that of rutile TiO2 supported Pt catalysts. Among the Ti1-xRuxO2 supported catalysts, the 20%Pt/Ti0.7Ru0.3O2 catalyst exhibits the best catalytic activity towards MOR add ORR (MOR: maxium current density 103 mA/cm2、onset potential 0.79 V/NHE), this can be ascribed to the high surface area of nano-sized support and electron-rich electroic structure of Pt. XAS characterization and computational simulation indicate that creation oxygen vacancies on Ti1-xRuxO2 supports would modify the electric structure of Pt catalysts and promote the catalytic activity. Regarding the electrode slurry fabrication engineering, 20%Pt/Ti0.7Ru0.3O2 catalyst exhibites the hightest MOR and ORR performance by adding 15% carbon in the slurry. The Ru-doped bimetallic oxides supported catalysts shows the superior electrochemical stability and corrosion resistance compared to traditional carbon supported Pt catalysts.

    摘要 1 Abstract 2 目錄 5 第一章 緒論 18 1.1 前言 18 1.1.1 DMFC陽極觸媒 26 1.1.2 DMFC 電解質膜 27 1.1.3 DMFC陰極觸媒 28 1.1.4 DMFC觸媒研究目標 33 1.2 研究動機與目的 34 第二章 文獻回顧與理論基礎 36 2.1 金屬氧化物觸媒載體 36 2.2 乙二醇還原法(Ethylene glycol Reduction method) 40 2.3 X光吸收光譜原理 42 2.3.1 延伸X光吸收微細結構(EXAFS) 43 2.3.2 X光吸收進邊緣結構(XANES) 47 2.3.3 數據分析 48 2.4 X光繞射分析原理 54 2.5 電化學原理 55 2.5.1 循環伏安法 55 2.5.2 極化曲線 59 2.5.3 旋轉盤電極(Rotating Disc Electrode, RDE)[60] 60 2.6 表面積測定儀 63 2.6.1 BET (Brunauer-Emmett-Teller) Equation 63 2.6.2 等溫吸附曲線 64 2.6.3 等溫吸附曲線之遲滯現象 67 2.7 四點探針導電度量測儀(Four –Point Probe system) 70 2.8 掃描式電子顯微鏡-能量散射光譜儀(SEM-EDX) 71 2.9 拉曼散射光譜(Raman spectrum) 72 2.10 感應偶合電漿放射光譜儀(ICP-AES) 73 2.11 程序升溫表面反應(TPSR)原理 73 第三章 實驗設備與方法 76 3.1 實驗藥品及設備 76 3.1.1 實驗藥品 76 3.1.2 儀器設備 77 3.2 實驗方法 79 3.2.1 觸媒之製備 79 3.2.1.1 單步驟水熱法(One-step hydrothermal method) 79 3.2.1.2 微波輔助乙二醇還原法(Micrcowave -assisted Ethylene glycol Reduction method) 80 3.2.1.3 載體於10%氫氣/90%氬氣環境下之熱處理(10%H2/90%Ar heat treatment) 81 3.2.2 材料鑑定與分析 81 3.2.2.1 X光繞射分析(XRD) 81 3.2.2.2 掃描式電子顯微鏡-能量散射光譜(SEM-EDS) 82 3.2.2.3 四點探針量測(Four point probe measurement) 82 3.2.2.4 比表面積測定儀(BET) 83 3.2.2.5 程序升溫還原(TPR)系統 83 3.2.2.6 穿透式電子顯微鏡(TEM) 84 3.2.2.7 感應偶合電漿放射光譜儀(ICP-AES) 84 3.2.2.8 X光吸收光譜(XAS) 84 3.2.2.9 電化學特性測試 85 3.2.2.9.1 電極片製備 85 3.2.2.9.2 循環伏安法(Cyclic voltammetry) 86 3.2.2.9.3 甲醇氧化反應-循環伏安法(MOR-CV) 86 3.2.2.9.4 甲醇氧化反應-穩定度測試(MOR-Stability Test) 87 3.2.2.9.5 氧氣還原反應-線性掃描伏安法(ORR-LSV) 87 3.2.2.9.6 氧氣還原反應-線性掃描伏安法(穩定度測試)(ORR-LSV-Stability Test) 88 第四章 結果與討論 89 4.1 金屬氧化物載體與觸媒之材料特性分析 89 4.1.1 材料之晶相與形態之分析 90 4.1.2 材料組成元素分析 96 4.1.2.1 掃描式電子顯微鏡-能量散射光譜儀(SEM-EDX) 96 4.1.2.2 感應偶合電漿放射光譜儀(ICP-AES) 97 4.1.3 金屬氧化物載體與觸媒導電度量測 97 4.1.4 金屬氧化物載體HT_TxR1-x BET量測分析 100 4.1.4.1 BET比表面積測定 100 4.1.4.2 等溫吸脫附曲線分析 102 4.1.4.3 孔洞分佈分析 103 4.1.5 金屬氧化物載體於10%氫氣下升溫還原量測(TPR) 108 4.2 金屬氧化物載體與觸媒之結構鑑定 109 4.2.1 拉曼光譜(Raman spectrum)量測 109 4.2.2 X光吸收近邊緣結構(XANES) 111 4.2.2.1 金屬氧化物載體 TixRu1-xO2 111 4.2.2.2 20%Pt/ TixRu1-xO2觸媒 112 4.2.3 延伸X光吸收微細結構(EXAFS) 116 4.2.3.1 金屬氧化物載體 TixRu1-xO2 116 4.2.3.2 20%Pt/ TixRu1-xO2觸媒 117 4.3 電化學特性量測結果 119 4.3.1 甲醇氧化反應活性量測 119 4.3.1.1 觸媒在0.5M 硫酸水溶液中之循環伏安分析 119 4.3.1.2 電催化甲醇氧化循環伏安法分析 123 4.3.1.3 觸媒穩定性測試-甲醇氧化反應 132 4.3.2 氧氣還原反應活性量測 133 4.3.2.1 觸媒在0.5M 硫酸水溶液中之循環伏安分析 133 4.3.2.2 氧氣還原反應線性掃描分析 137 4.3.2.3 觸媒穩定性測試-氧氣還原反應 143 4.4 理論模擬計算 149 4.4.1 計算方法 149 4.4.2 理論計算結果 152 第五章 綜合討論 155 5.1 金屬氧化物載體HT_TxR1-x材料之特性分析 155 5.2 20PtTxR1-x觸媒材料之特性分析 156 5.3 熱處理對觸媒結構與電化學活性之影響 157 5.4 不同載體相結構(Anatase、Rutile)觸媒對電化學活性之影響 159 5.5 20PtTxR1-x觸媒材料之電化學活性比較 160 5.5.1 使用於陽極甲醇氧化反應之活性比較 160 5.5.2 使用於陰極氧氣還原反應之活性比較 162 第六章 結論 164 附錄 165 參考文獻 169

    1. L. Carrette, K.A.F., U. Stimming,, Fuel Cells - Fundamentals and Applications. Fuel Cells, 2001. 1(1): p. 5-39.
    2. Sundmacher, K., K. Schultz, S. Zhou, K. Scott, M. Ginkel, and E.D. Gilles, Dynamics of the direct methanol fuel cell (DMFC):experiments and model-based analysis. Chemical Engineering Science, 2001. 56: p. 333.
    3. Antig 勝光 直接甲醇燃料電池堆反應.
    4. Gasteiger, H.A., N. Markovic, P.N. Ross Jr, and E.J. Cairns, Methanol electrooxidation on well-characterized Pt-Ru alloys. Journal of Physical Chemistry, 1993. 97(46): p. 12020-12029.
    5. Hamann, C.H., A. Hammnett, and W. Vielstich, Electrochemistry, ed. 1st1998: Wiley-VCH, Weinheim.
    6. Wroblowa, H.S., P. Yen Chi, and G. Razumney, Electroreduction of oxygen a new mechanistic criterion. Journal of Electroanalytical Chemistry, 1976. 69(2): p. 195-201.
    7. Tarasevich, M.R., A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry. Oxygen Electrochemistry, ed. J.O. Bockris, et al.1983, New York. 301.
    8. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1-2): p. 5-25.
    9. 林冠男, 密度泛涵理論在Pt15, Pt11Fe4和Pt11Co4團簇上對氧氣還原之研究, in 化學工程所2006, 台灣科技大學.
    10. Ferreira, P.J., G.J. La O, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation. Journal of the Electrochemical Society, 2005. 152(11): p. A2256-A2271.
    11. Antolini, E., Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Materials Chemistry and Physics, 2003. 78(3): p. 563-573.
    12. Sheng, W., S. Chen, E. Vescovo, and Y. Shao-Horn, Size Influence on the Oxygen Reduction Reaction Activity and Instability of Supported Pt Nanoparticles. Journal of the Electrochemical Society, 2011. 159(2): p. B96-B103.
    13. Kibsgaard, J., Y. Gorlin, Z. Chen, and T.F. Jaramillo, Meso-Structured Platinum Thin Films: Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012. 134(18): p. 7758-7765.
    14. Wang, Y.J., D.P. Wilkinson, A. Guest, V. Neburchilov, R. Baker, F. Nan, G.A. Botton, and J. Zhang, Synthesis of Pd and Nb-doped TiO2 composite supports and their corresponding Pt-Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction. Journal of Power Sources, 2013. 221: p. 232-241.
    15. Xu, W. and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. International Journal of Hydrogen Energy, 2010. 35(21): p. 12029-12037.
    16. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1-2): p. 1-24.
    17. Ma, X., H. Meng, M. Cai, and P.K. Shen, Bimetallic Carbide Nanocomposite Enhanced Pt Catalyst with High Activity and Stability for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012. 134(4): p. 1954-1957.
    18. Sharma, S. and B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts - A review. Journal of Power Sources, 2012. 208: p. 96-119.
    19. Yuan, H., D. Guo, X. Qiu, W. Zhu, and L. Chen, Influence of metal oxides on Pt catalysts for methanol electrooxidation using electrochemical impedance spectroscopy. Journal of Power Sources, 2009. 188(1): p. 8-13.
    20. Foger, K. and J.R. Anderson, Thermally stable SMSI supports: Iridium supported on TiO2-Al2O3 and on Ce-stabilized anatase. Applied Catalysis, 1986. 23(1): p. 139-155.
    21. Ho, V.T.T., N.G. Nguyen, C.-J. Pan, J.-H. Cheng, J. Rick, W.-N. Su, J.-F. Lee, H.-S. Sheu, and B.-J. Hwang, Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy, 2012. 1(5): p. 687-695.
    22. Thanh Ho, V.T., K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, and W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10).
    23. Huang, S.-Y., P. Ganesan, S. Park, and B.N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
    24. Huang, S.-Y., P. Ganesan, and B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011. 102(1–2): p. 71-77.
    25. Shanmugam, S. and A. Gedanken, Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO2. The Journal of Physical Chemistry C, 2009. 113(43): p. 18707-18712.
    26. Park, K.-W., Y.-W. Lee, J.-K. Oh, D.-Y. Kim, S.-B. Han, A.R. Ko, S.-J. Kim, and H.-S. Kim, TiO2-based nanowire supported catalysts for methanol electrooxidation in direct methanol fuel cells. Journal of Industrial and Engineering Chemistry, 2011. 17(4): p. 696-699.
    27. Zhang, J., M. Li, Z. Feng, J. Chen, and C. Li, UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B, 2005. 110(2): p. 927-935.
    28. Bae, D.-S., K.-S. Han, and S.-H. Choi, Fabrication and characterization of Ru-doped TiO2 composite membranes by the sol-gel process. Materials Letters, 1997. 33(1–2): p. 101-105.
    29. Colomer, M.T. and J.R. Jurado, Structural, microstructural, and electrical transport properties of TiO2RuO2 ceramic materials obtained by polymeric sol-gel route. Chemistry of Materials, 2000. 12(4): p. 923-930.
    30. Iwasita, T., H. Hoster, A. John-Anacker, W.F. Lin, and W. Vielstich, Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt−Ru Atom Distribution. Langmuir, 1999. 16(2): p. 522-529.
    31. Gojković, S.L., B.M. Babić, V.R. Radmilović, and N.V. Krstajić, Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs. Journal of Electroanalytical Chemistry, 2010. 639(1-2): p. 161-166.
    32. Wang, D., C.V. Subban, H. Wang, E. Rus, F.J. DiSalvo, and H.D. Abruna, Highly Stable and CO-Tolerant Pt/Ti0.7W0.3O2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2010. 132(30): p. 10218-10220.
    33. Ho, V.T.T., C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011. 133(30): p. 11716-11724.
    34. Liu, Z., X.Y. Ling, J.Y. Lee, X. Su, and L.M. Gan, Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts. Journal of Materials Chemistry, 2003. 13(12): p. 3049-3052.
    35. Sarma, L.S., C.-H. Chen, S.M.S. Kumar, G.-R. Wang, S.-C. Yen, D.-G. Liu, H.-S. Sheu, K.-L. Yu, M.-T. Tang, J.-F. Lee, C. Bock, K.-H. Chen, and B.-J. Hwang, Formation of Pt−Ru Nanoparticles in Ethylene Glycol Solution: An in Situ X-ray Absorption Spectroscopy Study. Langmuir, 2007. 23(10): p. 5802-5809.
    36. Bock, C., C. Paquet, M. Couillard, G.A. Botton, and B.R. MacDougall, Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism. Journal of the American Chemical Society, 2004. 126(25): p. 8028-8037.
    37. Tran, T.D. and S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 1993. 65(13): p. 1805-1807.
    38. Markovic, N.M., B.N. Grgur, C.A. Lucas, and P.N. Ross, Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions. Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
    39. 彭文權, 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒, in 化學工程學系1997, 元智工學院 
    40. 胡啟章, 電化學原理與方法2002: 五南圖書出版公司.
    41. 劉端祺, 異相觸媒 chapter5-1, 2011, Handout.
    42. Brunauer, S., L.S. Deming, W.E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 1940. 62(7): p. 1723-1732.
    43. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller,, J. Am. Chem.Soc., 1940. 62: p. pp.1723.
    44. IUPAC Manual of Symbols and Terminology. Pure Appl. Chem, 1972: p. Appendix 2,Pt. 1.
    45. 科豐國際有限公司 四點探針電阻量測原理.
    46. Thanh Ho, V.T., K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, and W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194-4200.
    47. Akalework, N.G., C.-J. Pan, W.-N. Su, J. Rick, M.-C. Tsai, J.-F. Lee, J.-M. Lin, L.-D. Tsai, and B.-J. Hwang, Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012.
    48. Rochefort, D. and A.-L. Pont, Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochemistry Communications, 2006. 8(9): p. 1539-1543.
    49. Mancharan, R. and J.B. Goodenough, Methanol oxidation in acid on ordered NiTi. Journal of Materials Chemistry, 1992. 2(8): p. 875-887.
    50. Kresse, G. and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
    51. Kresse, G. and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169-11186.
    52. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558-561.
    53. Hu, P., D.A. King, S. Crampin, M.H. Lee, and M.C. Payne, Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}. Chemical Physics Letters, 1994. 230(6): p. 501-506.
    54. Perdew, J.P., in Electronic Structure in Solids '911991: Akademie Verlag:Berlin.
    55. Perdew, J.P., J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
    56. Ortega, Y., N.C. Hernandez, E. Menendez-Proupin, J. Graciani, and J.F. Sanz, Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. Physical Chemistry Chemical Physics, 2011. 13(23): p. 11340-11350.
    57. Calzado, C.J., N.C. Hernandez, and J.F. Sanz, Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO_{2} surface. Physical Review B, 2008. 77(4): p. 045118.
    58. Bader, R.F.W., Atoms in Molecules: A Quantum Theory1990: Oxford.

    QR CODE