簡易檢索 / 詳目顯示

研究生: 林若芸
Ruo-Yun Lin
論文名稱: 鐵鈰混合氧化物觸媒之氧空缺於二氧化碳脫氧反應的催化特性分析
Analysis of oxygen stripping of CO2 over oxygen vacancies of cerium-iron mixed oxide
指導教授: 林昇佃
Shawn D. Lin
口試委員: 江志強
Jyh-Chiang Jiang
游文岳
Wen-Yueh Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 氧化鈰氧化鐵二氧化碳脫氧反應
外文關鍵詞: CeO2, Fe2O3, stripped oxygen from CO2
相關次數: 點閱:198下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以具氧空缺之鐵鈰混合氧化物觸媒進行二氧化碳脫氧反應,以共沉澱法合成不同鐵鈰比例之觸媒,探討觸媒中氧化鈰與氧化鐵之可能的交互作用力,進行兩部份討論。第一部份研究中,以程溫氫氣還原H2-TPR與程溫二氧化碳脫氧TP-CO2進行反應,測試比例與反應性的關係,結果顯示所有觸媒大約在400 °C開始脫氧反應,並在600 °C結束,含鐵量較高的觸媒有較高的脫氧反應量,指出混合氧化物中,鐵為二氧化碳脫氧反應的主要貢獻者,實驗室前人研究結果得知,若比較鐵含量相同的鐵鈰混合氧化物與鐵擔載在SBA-15上,鐵鈰混合氧化物具有較佳的反應性,顯示CeO2與Fe2O3之間的交互作用力可提高脫氧反應能力。從穩定性測試結果得知,在600 °C恆溫下進行5次H2還原- CO2脫氧後,鐵鈰混合氧化物仍有氧空缺形成及二氧化碳脫氧活性。第二部分利用臨場傅立葉轉換紅外線光譜儀分析在TP-CO2程序中,二氧化碳在氧化物上的吸附及反應,先分析新鮮與經氫氣還原後的CeO2與Fe2O3,觀察到新鮮鐵鈰混合氧化物同時有CO2在純CeO2的Bidentate carbonate吸附與純Fe2O3上的1111 cm-1振動訊號,氫氣還原後的鐵鈰混合氧化物則無看到還原後CeO2的吸附訊號,只有與還原後Fe2O3相似的1117 cm-1振動訊號,推測脫氧反應主要發生在鐵鈰混合氧化物中的鐵。


    In this study, cerium and iron mixed oxides are prepared by co-precipitation method and the oxygen vacancies are applied for oxygen stripping of CO2. In order to illustrate the interaction between CeO2 and Fe2O3 in catalyst, we examine the oxides of different Ce/Fe ratio. The reaction activity is examined by a test procedure of sequential H2-TPR and TP-CO2. The results show that the deoxygenation reaction has an onset temperature at about 400 °C with all the catalysts, and with a maximum at around 600 °C under the test conditions. The iron-rich catalysts have a higher CO2 deoxidation capacity. This indicates that iron-phase of the mixed oxides contribute the main CO2 deoxygenation activity. The stability test shows that the mixed oxide can retain oxygen vacancies generation and CO2 deoxygenation reactivity in 5-cycle H2-reduction-CO2-deoxygenation at 700 °C. In-situ FTIR is applied for examining the adsorption and reaction of CO2 species on the oxide surface. Bidentate carbonate is found on both fresh and reduced CeO2. Bidentate carbonate on fresh CeO2 gradually desorbs with increasing temperature while bidentate carbonate on reduced CeO2 remains presence when it reaches 700 °C. The species can probably indicate the presence of surface oxygen vacancy. Thus, there could be some oxygen vacancies on 700 °C reduced CeO2. We detected both the bidentate carbonate from fresh CeO2 adsorption and 1111 cm-1 vibration mode from fresh Fe2O3 on the fresh cerium iron mixed oxide. However, we can only find 1117 cm-1 from reduced Fe2O3 on the reduced cerium iron mixed oxide. It indicates that iron-phase of the mixed oxides mainly participate in the CO2 deoxygenation.

    摘要 I Abstract III 目錄 VI 圖目錄 VIII 表目錄 X 第1章 、緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 CO2轉換技術 3 1.2.2 CeO2材料性質 4 1.2.3 CeO2摻雜金屬修飾對氧空缺特性之影響 6 1.2.4 鐵鈰混合氧化物應用於CO2轉化 7 1.3 研究目的 9 第2章 、實驗架構與方法 10 2.1 實驗架構 10 2.2 藥品與儀器設備 11 2.2.1 藥品 11 2.2.2 氣體 11 2.2.3 使用儀器 12 2.3 觸媒製備 13 2.3.1 共沉澱法(Co-Precipitation)製備CeyFe1-yOx觸媒 13 2.4 觸媒特性分析原理與方法 14 2.4.1 X光繞射分析(XRD) 14 2.4.2 表面積與孔隙度測定儀(BET) 15 2.4.3 程溫還原反應(TPR) 16 2.4.4 質譜儀(Mass Spectrometer) 17 2.4.5 臨場傅立葉轉換紅外線光譜儀(In-situ Fourier Transform Infrared Spectroscopy) 19 2.4.6 X光光電子能譜儀(XPS) 21 2.4.7 X光吸收光譜 21 2.4.8 觸媒重複反應測試 22 第3章 、結果討論 23 3.1 不同比例之鐵鈰觸媒對CO2脫氧反應之分析 23 3.1.1鐵鈰混合氧化物觸媒之特性分析 24 3.1.2 H2-TPR與CO2-TPO反應 45 3.1.3 觸媒重複反應測試 52 3.2 紅外線光譜儀於鐵鈰觸媒表面之吸附與反應分析 57 3.2.1 CO2於CeO2表面之吸附與CO2-TPO反應分析 57 3.2.2 CO2於Fe2O3表面之吸附與CO2-TPO反應分析 63 3.2.3 CO2於鐵鈰混合氧化物觸媒表面之吸附與CO2-TPO反應分析 67 第4章 、結論 72 Reference 74 第5章 、附錄 77

    1. DiMeglio, J.L. and J. Rosenthal, Selective Conversion of CO2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst. Journal of the American Chemical Society, 2013. 135(24): p. 8798-8801.
    2. He, Y., et al., High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015. 168: p. 1-8.
    3. Su, X., et al., Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. Journal of energy chemistry, 2017. 26(5): p. 854-867.
    4. Beuls, A., et al., Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 2012. 113: p. 2-10.
    5. Swalus, C., et al., CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature:“In situ” supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 2012. 125: p. 41-50.
    6. Behrens, M., Heterogeneous catalysis of CO2 conversion to methanol on copper surfaces. Angewandte Chemie International Edition, 2014. 53(45): p. 12022-12024.
    7. Jiraskova, Y., et al., Effect of Iron Impurities on Magnetic Properties of Nanosized CeO2 and Ce-Based Compounds. Metals, 2019. 9(2): p. 222.
    8. Younis, A., D. Chu, and S. Li, Cerium oxide nanostructures and their applications. Funct. Nanomater, 2016. 3: p. 53-68.
    9. Sun, C., H. Li, and L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science, 2012. 5(9): p. 8475-8505.
    10. Yang, C., et al., Defect Engineering on CeO2‐Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021. 2(12): p. 2100058.
    11. Gu, Z., et al., Enhanced reducibility and redox stability of Fe 2 O 3 in the presence of CeO 2 nanoparticles. Rsc Advances, 2014. 4(88): p. 47191-47199.
    12. Schwarz, K., Materials design of solid electrolytes. Proceedings of the National Academy of Sciences, 2006. 103(10): p. 3497-3497.
    13. Ma, S., et al., Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation. Chemical Engineering Journal, 2018. 346: p. 712-725.
    14. Galvita, V.V., et al., CeO2-modified Fe2O3 for CO2 utilization via chemical looping. Industrial & Engineering Chemistry Research, 2013. 52(25): p. 8416-8426.
    15. Zhu, X., et al., Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: evolution of its structure and reducibility. Energy & fuels, 2014. 28(2): p. 754-760.
    16. Ma, Z., S. Zhang, and R. Xiao, Insights into the relationship between microstructural evolution and deactivation of Al2O3 supported Fe2O3 oxygen carrier in chemical looping combustion. Energy Conversion and Management, 2019. 188: p. 429-437.
    17. Zhao, J., et al., A La, Sm co-doped CeO 2 support for Fe 2 O 3 to promote chemical looping splitting of CO 2 at moderate temperature. Sustainable Energy & Fuels, 2022. 6(5): p. 1448-1457.
    18. Galvita, V. and K. Sundmacher, Redox behavior and reduction mechanism of Fe2O3–CeZrO2 as oxygen storage material. Journal of materials science, 2007. 42(22): p. 9300-9307.
    19. 黃敬庭, 鐵鈰混合氧化物應用於中溫二氧化碳脫氧反應, in 化學工程系. 2019, 國立臺灣科技大學: 台北市. p. 109.
    20. Li, K., et al., Microstructure and oxygen evolution of Fe–Ce mixed oxides by redox treatment. Applied surface science, 2014. 289: p. 378-383.
    21. Liu, B., et al., Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis, 2018. 8(11): p. 10446-10456.
    22. Qin, J., et al., Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. Journal of Catalysis, 2019. 371: p. 161-174.
    23. Zhang, Z., et al., Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. Journal of Catalysis, 2010. 276(1): p. 16-23.
    24. Wang, D., et al., Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3. Energy, 2018. 162: p. 542-553.
    25. Sharma, A., et al., Electronic structure study of Ce 1− x A x O 2 (A= Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations. Physical Chemistry Chemical Physics, 2014. 16(37): p. 19909-19916.
    26. Garvie, L.A.J. and P.R. Buseck, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of Solids, 1999. 60(12): p. 1943-1947.
    27. Gong, Z.-J., et al., Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020. 265: p. 118524.
    28. Li, M., et al., Effect of dopants on the adsorption of carbon dioxide on ceria surfaces. ChemSusChem, 2015. 8(21): p. 3651-3660.
    29. Koeppel, R.A., et al., Carbon dioxide hydrogenation over Au/ZrO 2 catalysts from amorphous precursors: catalytic reaction mechanism. Journal of the Chemical Society, Faraday Transactions, 1991. 87(17): p. 2821-2828.
    30. Sanchez-Escribano, V., et al., On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: An IR study. Applied Catalysis A: General, 2007. 316(1): p. 68-74.
    31. Baltrusaitis, J., et al., Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 2011. 170(2-3): p. 471-481.
    32. Nguyen, T.H., H.B. Kim, and E.D. Park, CO and CO2 Methanation over CeO2-Supported Cobalt Catalysts. Catalysts, 2022. 12(2): p. 212.
    33. Alexeev, O.S., et al., In situ FTIR characterization of the adsorption of CO and its reaction with NO on Pd-based FCC low NOx combustion promoters. Catalysis today, 2007. 127(1-4): p. 189-198.
    34. Baltrusaitis, J., J.H. Jensen, and V.H. Grassian, FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. The Journal of Physical Chemistry B, 2006. 110(24): p. 12005-12016.
    35. Huynh, H.L., et al., Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 2020. 392: p. 266-277.

    QR CODE