簡易檢索 / 詳目顯示

研究生: 蔡明駿
Ming-Chun Tsai
論文名稱: 常壓電漿噴射束快速滲氮與空冷氧化於工具鋼表面處理
Facile Process of Nitriding and Air-Cooling Oxidation on Tool Steel by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 何羽健
Yu-Chien Ho
李志偉
Jyh-Wei Lee
邱六合
Liu-ho Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 152
中文關鍵詞: 常壓電漿噴射束金屬表面滲氮抗磨耗性質抗腐蝕性質
外文關鍵詞: Atmospheric pressure plasma jet (APPJ), Metal nitriding, Combat wear properties, Combat corrosion properties
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

常壓電漿噴射束(Atmospheric Pressure Plasma Jet, APPJ)滲氮為近年興起的一項金屬表面硬化研究,但由文獻與過去研究指出使用APPJ滲氮雖然可以於一大氣壓的環境下進行滲氮處理,但因需要維持工作氣氛與保持製程溫度,所以會使用遮罩將電漿噴頭與欲處理試片至於密閉環境中,導致APPJ滲氮快速且能夠自由活動的優勢消失。因此本研究比較將遮罩移除前後對滲氮處理的影響,且為了將補償原先遮罩的保溫效果,因此導入加熱平台輔助製程,並與未使用遮罩與加熱平台之製程比較,另外因APPJ滲氮製程要大面積製程時,冷卻方式會以慢速空冷為主,因此本研究也會針對不同的冷卻方式進行實驗。在APPJ滲氮製程中會使用光學放射光譜儀與溫度感測器及熱顯像儀進行電漿製程的檢測,經不同製程的試片會使用場發式電子顯微鏡、X光繞射儀與X射線光電子能譜儀進行改質層的基本的材料分析,接續則會使用維克氏硬度機、Pin-on-Disk磨耗分析儀及恆電位儀分別針對改質層的機械性質與化學性質進行研究與探討。
研究結果顯示APPJ在接觸試片表面時並未於電漿放光譜中偵測到氧相關訊號因此可證實在APPJ滲氮時,氮氫混合氣電漿會完全覆蓋試片表面,還原氧化物的生成。根據晶體繞射檢測結果使用遮罩進行製程可檢測到完整之氮化物的訊號,未使用遮罩之製程因無法維持工作氣氛,因此有接近SKD11之訊號顯現並有於冷卻時生成的氧化物訊號。橫切面金相顯示使用遮罩與未使用遮罩皆可於SKD11工具鋼表面形成三層的化合物層、擴散層與心部組織,證實使用遮罩與未使用遮罩皆可成功滲氮,並且滲氮深度受到處理溫度影響,經硬度測試也可發現有材料表面硬化的效果;放大倍率後可從未使用遮罩的試片表面發現氧化物的生成,與電漿放光譜量測結果對照,證實在未使用的遮罩下進行冷卻會有氧化層形成,且由X射線光電子能譜儀結果顯示,氧化物的生成是先生成Fe3O4接著與氧原子的持續反應再生成Fe2O3。磨耗試驗結果顯示具有氧化層之試片摩擦係數會有所降低,且磨耗率也會大幅降低;電化學測試結果中,具有氧化層試片的表面電荷轉移電阻大幅提升,且從極化曲線結果中也可發現腐蝕電流大幅下降的趨勢。


Atmospheric Pressure Plasma Jet (APPJ) nitriding is a recent emerging research in metal surface hardening. Although APPJ nitriding can be performed at atmospheric pressure, it requires a cover to maintain the working atmosphere and process temperature, which eliminates the advantage of rapid and unrestricted movement of the APPJ. Therefore, this study compares the effects of nitriding treatment with and without the cover. A heating platform is introduced to compensate for the cover's insulation effect, and different cooling methods are compared. Optical emission spectroscopy, thermal meter, and thermal imager are used to monitor the plasma process. The modified layer is analyzed using field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Furthermore, Vickers hardness testing, Pin-on-Disk wear analysis, and potentiostat techniques are employed to investigate the mechanical and chemical properties of the modified layer.
The research results indicate that no oxygen-related signals were detected in the plasma emission spectrum when APPJ contacted the sample surface. This confirms that during APPJ nitriding, the nitrogen-hydrogen mixed gas plasma completely covers the sample surface, reducing oxide formation. X-ray diffraction analysis showed that using a mask during the process resulted in a complete signal of nitrides. In contrast, the process without a cover, which couldn't maintain the working atmosphere, exhibited signals close to the pristine material and showed the generation of oxide signals during cooling. Cross-section metallography revealed a three-layer morphology consisting of a compound layer, diffusion layer, and core structure on the surface both with and without the mask, confirming successful nitriding. Treatment temperature influenced nitriding depth, and hardness testing demonstrated surface hardening. Amplification of the sample surface without a mask revealed oxide formation, consistent with the plasma emission spectroscopy measurements. X-ray photoelectron spectroscopy indicated the initial formation of Fe3O4 followed by subsequent transformation to Fe2O3 due to continuous oxygen atom reactions. Wear test results showed a reduction in friction coefficient and a significant decrease in wear rate for samples with oxide layers. Electrochemical testing demonstrated a substantial increase in surface charge transfer resistance for samples with oxide layers, and the polarization curves exhibited a trend toward the upper-left direction.

第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 JIS-SKD11工具鋼 5 2.1.1 SKD11化學組成之影響 5 2.1.2 SKD11熱處理 9 2.2 滲氮機制與方法 10 2.2.1 氮原子擴散與滲氮層形成方式 10 2.2.2 滲氮製程與方法 15 2.2.3 SKD11滲氮性質 19 2.3 腐蝕 22 2.3.1 腐蝕的分類 22 2.3.2 電化學腐蝕的機制 27 2.3.3 金屬防蝕氧化層 31 2.4 磨耗 33 2.4.1 黏著磨耗 33 2.4.2 磨料磨耗 36 2.4.3 疲勞磨耗 38 2.5 常壓電漿 41 2.5.1 常壓電漿的基礎 41 2.5.2 常壓電漿的分類 44 2.5.3 常壓電漿於金屬表面處理之應用 46 第三章 實驗方法 48 3.1 實驗設計與流程 48 3.1.1 試片前處理 49 3.1.2 常壓電漿噴射束滲氮製程 50 3.1.3 材料分析與應用實驗 51 3.2 實驗材料與耗材 52 3.3 實驗機台與分析儀器 52 3.3.1 常壓電漿滲氮系統(APPJ Nitriding System) 52 3.3.2 光譜分析儀 (Optical Emission Spectrometer, OES) 55 3.3.3 X光繞射儀(X-ray Diffractometer, XRD) 56 3.3.4 維氏硬度機 (Vickers Hardness Tester) 57 3.3.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 58 3.3.6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 59 3.3.7 Pin-on-Disk磨耗測試 60 3.3.8 電化學分析儀 61 第四章 結果與討論 62 4.1 電漿物種分析 62 4.2 製程溫度分析 65 4.3 晶體結構分析 68 4.4 顯微組織與成分分析 72 4.5 硬度分析 80 4.6 材料表面化學鍵結分析 83 4.7 機制推導 101 4.8 電化學性質測試 104 4.9 磨耗測試 111 第五章 結論 125 第六章 未來展望 128 參考文獻 129

[1] D. Thomas, Co2 emissions and the heat treatment industry, https://themonty.com/auto-draft-20/, 2023 (accessed June6, 2023).
[2] United Nations, The sustainable development goals report 2022, https://unstats.un.org/sdgs/report/2022/, 2022 (accessed June6, 2023).
[3] 行政院國家永續發展委員會,臺灣永續發展目標,https://ncsd.ndc.gov.tw/Fore/AboutSDG, 2017 (accessed June6, 2023).
[4] 陳宏宇,臺灣氣候的過去與未來,國家災害防救科技中心,台灣,2018。
[5] Stamping mold accessories SKD11 material concave mold complete models, https://www.alibaba.com/product-detail/Stamping-mold-accessories-SKD11-material-concave_1600121143133.html, 2022 (accessed June6, 2023).
[6] Hardline smooth blade pocket knife, https://www.amazon.com/Milwaukee-Electric-Tool-48-22-1994-Hardline/dp/B01HQQ107C, 2022 (accessed June6, 2023).
[7] A2 steel VS D2 Steel, https://www.otaisteel.com/technical-support/a2-steel-vs-d2-steel-astm-a681-1999/, 2021 (accessed June6, 2023).
[8] Tablet triturate mold, https://www.pccarx.com/products/TABLETTRITURATEMOLD-200MG/35-1989/EQUIPMENT, 2022 (accessed June6, 2023).
[9] R. Ichiki, M. Kono, Y. Kanbara, T. Okada, T. Onomoto, K. Tachibana, T. Furuki, S. Kanazawa, Controlling nitrogen dose amount in atmospheric-pressure plasma jet nitriding, Met. 9 (2019) 714.
[10] S. Chiba, R. Ichiki, T. Nakatani, T. Ueno, S. Kanazawa, Development of local evacuation system for inhibiting oxidization in atmospheric-pressure plasma jet nitriding, Results Phys. 13 (2019) 102131.
[11] 郭兆渝,常壓電漿噴射束於回火麻田散鐵鋼表面滲氮處理之製程溫度、時間與硬質層生成相互關係之研究,國立臺灣科技大學機械工程系,博士論文,2021。
[12] A. Calik, A. Duzgun, O. Sahin, N. Ucar, Effect of carbon content on the mechanical properties of medium carbon steels, Sect. A J. Phys. Sci. 65 (2010) 468–472.
[13] J. J. C. Hoo, Effect of steel manufacturing processes on the quality of bearing steels, American, ASTM International, 1988.
[14] R. A. C. George, A. Roberts, Tool Steel, American, ASM International, 1980.
[15] W. Robert, Metallurgy and Heat Treatment of Tool Steels, American, McGraw-Hill, 1976.
[16] S. Peissl, G. Mori, H. Leitner, R. Ebner, S. Eglsäer, Influence of chromium, molybdenum, and cobalt on the corrosion behavior of high carbon steels in dependence of heat treatment, Mater. Corros. 57 (2006) 759–765.
[17] C. Celada-Casero, J. Sietsma, M. J. Santofimia, The role of the austenite grain size in the martensitic transformation in low carbon steels, Mater. Des. 167 (2019).
[18] B. R. Davis, A. Javaid, E. Essadiqi, Final report on effect of impurities in steel, Canada, Government of Canada, 2006.
[19] P. David, Practical nitriding and ferritic nitrocarburizing, american, ASM International, 2003.
[20] D. A. Porter, K. E. Easterling, M. Y. Sherif, Phase transformations in metals and alloys, American, CRC Press, 2021.
[21] M. G. Krukovich, Simulation of the nitriding process, Met. Sci. Heat Treat. 46 (2004) 25–31.
[22] E. M. Hernández-Cooper, R. D. Santiago-Acosta, F. Castillo-Aranguren, J. E. Oseguera-Peña, D. V. Melo-Máximo, J. A. Otero, Finite-size corrections on the estimation of the effective diffusion coefficients through the dynamical behavior of the diffusion zone during gaseous nitriding of pure iron, Therm. Sci. Eng. Prog. 28 (2022) 101096.
[23] Y. M. Lakhtin, Diffusion foundations of the nitriding process, Met. Sci. Heat Treat. 37 (1995) 276–279.
[24] ASM International, ASM handbook. Vol. 4, Heat treating, American, ASM International, 1991.
[25] T. Wang, Z. Yan, C. Michel, M. Pera-Titus, P. Sautet, Trends and control in the nitridation of transition-metal surfaces, ACS Catal. 8 (2018) 63–68.
[26] H. A. Wriedt, N. A. Gokcen, R. H. Nafziger, The Fe-N (Iron-Nitrogen) system, Bull. Alloy Phase Diagrams. 8 (1987) 355–377.
[27] N. M. Le, C. Schimpf, H. Biermann, A. Dalke, Effect of nitriding potential KN on the formation and growth of a “white layer” on iron aluminide alloy, Metall. Mater. Trans. B 02029-X/FIGURES/11. Process Metall. Mater. Process. Sci. 52 (2021) 414–424.
[28] E. J. Mittemeijer, M. A. J. Somers, Thermochemical surface engineering of steels, American, Elsevier Inc., 2015.
[29] 余秉憲,鋼料在N2基爐氣-NH3混合氣體中的軟氮化,國立臺灣大學材料科學與工程系,碩士論文 1987。
[30] C. DAWES, D. F. TRANTER, Process modifications widen range of nitrocarburizing, Met. Prog. (1984) 12–13.
[31] 曾春風,真空氮化與真空氧氮化之研究,材料科學,23 (1991) 335–347。
[32] 李勝隆,熱處理:金屬材料原理與應用,全華圖書股份有限公司,台灣,2014。
[33] M. Adolph, Treatment of steel, iron, 1908。
[34] 黃振賢,金屬熱處理,文京圖書,台灣,2004.
[35] 李正國、李志偉、林本源、邱錫榮、陳文嘉、溫炯亮、傅豪、蔡履文,熱處理,台灣,高立圖書出版社,2005。
[36] P. Kula, E. Wolowiec, R. Pietrasik, K. Dybowski, B. Januszewicz, Non-steady state approach to the vacuum nitriding for tools, Vacuum. 88 (2013) 1–7.
[37] M. Yang, R. D. Sisson, Gaseous nitriding process control: application of customized Lehrer diagrams, Int. Heat Treat. Surf. Eng. 7 (2013) 164–171.
[38] 余煥騰,金屬熱處理學,六合出版社,台灣,1998。
[39] X. Zhang, J. Wang, H. Fan, D. Pan, Erosion–corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding, Appl. Surf. Sci. 440 (2018) 755–762.
[40] Y. Lin, J. Wang, D. Zeng, R. Huang, H. Fan, Advance complex liquid nitriding of stainless steel AISI 321 surface at 430 °C, J. Mater. Eng. Perform. 22 (2013) 2567–2573.
[41] H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, A. Ricard, Progress in the analysis of the mechanisms of ion nitriding, Surf. Coat. Technol. 72 (1995) 103–111.
[42] Y. Sun, T. Bell, A numerical model of plasma nitriding of low alloy steels, Mater. Sci. Eng. A. 224 (1997) 33–47.
[43] P. Landgraf, T. Bergelt, L. M. Rymer, C. Kipp, T. Grund, G. Bräuer, T. Lampke, Evolution of microstructure and hardness of the nitrided zone during plasma nitriding of high-alloy tool steel, Met. 12 (2022) 866.
[44] C. M. Garzón, A. R. Franco, A. P. Tschiptschin, Thermodynamic analysis of M7C3 carbide dissolution during plasma nitriding of an AISI D2 tool steel, ISIJ Int. 57 (2017) 737–745.
[45] M. D. Conci, A. Ô. C. Bozzi, A. R. Franco, Effect of plasma nitriding potential on tribological behavior of AISI D2 cold-worked tool steel, Wear. 317 (2014) 188–193.
[46] J. C. Díaz-Guillén, M. Naeem, H. M. Hdz-García, J. L. Acevedo-Davila, M. R. Díaz-Guillén, M. A. Khan, J. Iqbal, A. I. Mtz-Enriquez, Duplex plasma treatment of AISI D2 tool steel by combining plasma nitriding (with and without white layer) and post-oxidation, Surf. Coat. Technol. 385 (2020) 125420.
[47] D. Yokoi, Y. Haruna, N. Tsujii, Y. Yokoyama, K. Fukaura, Fatigue Properties and Fracture Surface Analysis of Plazma-nitrided Cold Work Tool Steel, Tetsu-to-Hagane. 90 (2004) 170–176.
[48] 羅建明、陳桂清、柯正龍,大氣腐蝕因子調查及腐蝕環境分類之研究,交通部運輸研究所,台灣,2012。
[49] 羅建明、蔡立宏、張道光、莊凱迪、黃宇謙,110年臺灣沿岸地區金屬材料腐蝕環境調查研究,交通部運輸研究所,台灣,2022。
[50] 柯賢文,腐蝕及其防制,全華圖書股份有限公司,台灣,2012。
[51] M. G. Fontana, Corrosion Engineering, McGraw-Hill, American, 1967.
[52] M. R. Dorfman, Handbook of environmental degradation of materials: Thermal spray coatings, Elsevier Inc., American, 2012.
[53] M. Ludovico-Marques, C. Chastre, Consolidation works on sandstone monuments: A new approach, Elsevier Inc., American, 2018.
[54] S. Papavinasam, Corrosion control in the oil and gas industry, Elsevier Inc., American, 2013.
[55] A. M. El-Sherik, Trends in oil and gas corrosion research and technologies, Elsevier Inc., American, 2017.
[56] 蔡文達,應力腐蝕與腐蝕疲勞簡介,防蝕工程學刊,1 (1987) 42–61。
[57] 莊東漢,電化學原理於腐蝕研究上之應用,防蝕工程學刊,4 (1990) 14–28。
[58] 黑化處理,https://www.sk-ht.com/msg/msg16.html (accessed June7, 2023).
[59] Z. Ahmad, High Temperature Corrosion, Intech, American, 2016.
[60] Y.H.Li, D.F.Luo, S.X.Wu, QPQ salt bath nitriding and corrosion resistance, Solid State Phenom. 118 (2006) 131–136.
[61] Y.H.Li, D.F.Luo, S.X.Wu, Effect of QPQ salt bath oxidation on corrosion resistance, Solid State Phenom. 118 (2006) 209–214.
[62] QPQ quenching hardening quenching furnace, https://www.cdoinduction.com/induction_blog/quenching-polish-quenching-heat-treatment-furnace/ (accessed June7, 2023).
[63] Y. Li, L. Wang, D. Zhang, L. Shen, Improvement of corrosion resistance of nitrided low alloy steel by plasma post-oxidation, Appl. Surf. Sci. 256 (2010) 4149–4152.
[64] F. Mahboubi, M. Fattah, Duplex treatment of plasma nitriding and plasma oxidation of plain carbon steel, Vacuum. 79 (2005) 1–6.
[65] J. Wu, H. Liu, X. Ye, Y. Chai, J. Hu, Enhancement of corrosion resistance for plasma nitrided AISI 4140 steel by plain air plasma post-oxidizing, J. Alloys Compd. 632 (2015) 397–401.
[66] Karl-Heinz Zum Gahr, Microstructure and Wear of Materials, Elsevier Inc., American, 1987.
[67] M. E. Sikorski, The adhesion of metals and factors that influence it, Wear. 7 (1964) 144–162.
[68] T. Stolarski, Tribology in Machine Design, Elsevier Inc., American, 1999.
[69] S. Ebnesajjad, Handbook of Adhesives and Surface Preparation: Technology, Applications and Manufacturing, Elsevier Inc., American, 2010.
[70] R. O. Lewis, Wheel–Rail interface handbook, Elsevier Inc., American, 2009.
[71] V. Javaheri, D. Porter, V. T. Kuokkala, Slurry erosion of steel – Review of tests, mechanisms and materials, Wear. 408–409 (2018) 248–273.
[72] G. W. Stachowiak, Engineering Tribology, Elsevier Inc., American, 2014.
[73] M. Naeem, J. C. Díaz-Guillén, A. Khalid, I. Guzmán-Flores, R. Muñoz-Arroyo, J. Iqbal, R. R. M. Sousa, Improved wear resistance of AISI-1045 steel by hybrid treatment of plasma nitriding and post-oxidation, Tribol. Int. 175 (2022) 107869.
[74] J. C. Díaz-Guillén, M. Alvarez-Vera, J. A. Díaz-Guillén, J. L. Acevedo-Davila, M. Naeem, H. M. Hdz-García, E. E. Granda-Gutiérrez, R. Muñoz-Arroyo, A hybrid plasma treatment of H13 tool steel by combining plasma nitriding and post-oxidation, J. Mater. Eng. Perform. 27 (2018) 6118–6126.
[75] V. S. Saji, Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation, Adv. Colloid Interface Sci. 283 (2020) 102245.
[76] A. B. Murphy, T. McAllister, Modeling of the physics and chemistry of thermal plasma waste destruction, Phys. Plasmas. 8 (2001) 2565–2571. https://doi.org/10.1063/1.1345884.
[77] L. Mochalov, A. Logunov, I. Prokhorov, T. Sazanova, A. Kudrin, P. Yunin, S. Zelentsov, A. Letnianchik, N. Starostin, G. Boreman, V. Vorotyntsev, Plasma-Chemical synthesis of lead sulphide thin films for near-ir photodetectors, Plasma Chem. Plasma Process. 41 (2021) 493–506.
[78] T. Kttagawa, K. Maekawa, Plasma hot machining for new engineering materials, Wear. 139 (1990) 251–267.
[79] J. R. Roth, Industrial Plasma Engineering : Applications to Nonthermal Plasma Processing, Institute of Physics Publishing Bristol and Philadelphia, American, 2001.
[80] M. I. Boulos, P. Fauchais, E. Pfender, Thermal plasmas, Springer, American, 1994.
[81] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B At. Spectrosc. 61 (2006) 2–30.
[82] A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, The atmospheric-pressure plasma jet: A review and comparison to other plasma sources, IEEE Trans. Plasma Sci. 26 (1998) 1685–1694.
[83] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, S. Kanazawa, Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas, Surf. Coat. Technol. 225 (2013) 26–33.
[84] R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine, S. Kanazawa, Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure, Mater. Lett. 71 (2012) 134–136.
[85] 王憲柏,以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究,國立臺灣科技大學機械工程系,碩士論文,2018。
[86] 鍾宛庭,電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理,國立臺灣科技大學機械工程系,碩士論文,2019。
[87] X光繞射儀(XRD),https://sppic.ntust.edu.tw/p/405-1058-81296,c5703.php?Lang=zh-tw (accessed June7, 2023).
[88] 汪建民,材料分析,中國材料科學學會,台灣,1998。
[89] ASTM, Standard Test Method for Microindentation Hardness of Materials, 2022.
[90] 高解析度場發射掃描式電子顯微鏡 (FESEM-7900F),https://sppic.ntust.edu.tw/p/406-1058-74152,r1589.php?Lang=zh-tw (accessed June9, 2023).
[91] C. S. Fadley, X-ray photoelectron spectroscopy: Progress and perspectives, J. Electron Spectros. Relat. Phenomena. 178–179 (2010) 2–32.
[92] X射線光電子能譜儀 (XPS), https://sppic.ntust.edu.tw/p/404-1058-99440.php?Lang=zh-tw (accessed June9, 2023).
[93] Surface Analysis Products and Equipment from PHI, https://www.phi.com/surface-analysis-equipment.html (accessed June9, 2023).
[94] 磨耗試驗儀 (Tribometer),https://cptft.mcut.edu.tw/p/405-1019-48577,c1368.php?Lang=zh-tw (accessed June9, 2023)。
[95] ASTM, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, 2017.
[96] Pin-on-disk tribometer: TRB3  Anton-Paar.com, https://www.anton-paar.com/us-en/products/details/trb3-pin-on-disk-tribometer/ (accessed June9, 2023).
[97] VSP Potentiostat, https://www.biologic.net/products/vsp/ (accessed June9, 2023).
[98] J. H. VanHelden, P. J. Van DenOever, W. M. M. Kessels, M. C. M.Van DeSanden, D. C. Schram, R. Engeln, Production mechanisms of NH and NH2 radicals in N2-H2 plasmas, J. Phys. Chem. A. 111 (2007) 11460–11472.
[99] S. Kim, S. Yoon, J. H. Kim, S. Park, The effect of the transformation of ε-Fe2-3N into γ-Fe4N phase on the fatigue strength of gas-nitrided pure iron, Met. 10 (2020) 823.
[100]F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature, Surf. Coat. Technol. 200 (2005) 2474–2480. https://doi.org/10.1016/J.SURFCOAT.2004.07.110.
[101]L. Wang, S. Ji, J. Sun, Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel, Surf. Coat. Technol. 200 (2006) 5067–5070.
[102]S. Cui, Y. Shi, Y. Cui, T. Zhu, The influence of microstructure and chromium nitride precipitations on the mechanical and intergranular corrosion properties of K-TIG weld metals, Constr. Build. Mater. 210 (2019) 71–77.
[103]J. W. Zhang, L. T. Lu, K. Shiozawa, W. N. Zhou, W. H. Zhang, Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime, Int. J. Fatigue. 33 (2011) 880–886.
[104]M. Zlatanović, N. Popović, Ž. Bogdanov, S. Zlatanović, Pulsed plasma-oxidation of nitrided steel samples, Surf. Coat. Technol. 174–175 (2003) 1220–1224.
[105]S. S. Hosmani, R. E. Schacherl, E. J. Mittemeijer, The kinetics of the nitriding of Fe–7Cr alloys, Mater. Sci. Technol. 21 (2013) 113–124.
[106]L. A. Espitia, H. Dong, X. Y. Li, C. E. Pinedo, A. P. Tschiptschin, Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel, Wear. 333 (2015) 1070–1079.
[107]X. L. Yu, Z. Y. Jiang, J. W. Zhao, D. BinWei, C. L. Zhou, Effect of cooling rate on oxidation behaviour of microalloyed steel, Appl. Mech. Mater. 395 (2013) 273–278.
[108]H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka, Effect of Cooling Rate on Oxide Precipitation during Solidification of Low Carbon Steels, Tetsu-to-Hagane. 79 (1993) 1082–1087.
[109]H. Ruiz-Luna, J. Porcayo-Calderón, A. G. Mora-García, I. López-Báez, L. Martinez-Gomez, J. Muñoz-Saldaña, Corrosion performance of AISI 304 stainless steel in CO2-saturated brine solution, Prot. Met. Phys. Chem. Surfaces. 55 (2019) 1226–1235.
[110]S. Pentttlä, A. Toiyonen, L. Heikinheimo, R. Novotny, Corrosion studies of candidate materials for european hplwr, Nucl. Technol. 170 (2010) 261–271.
[111]T. Liu, Y. Lin, K. Zheng, H. Wang, Z. Zheng, Effect of minor Zr on oxidation resistance and mechanical property of nickel-saving austenitic heat-resistant cast steel, Mater. Res. Express. 7 (2019) 016514.
[112]F. Borgioli, E. Galvanetto, A. Fossati, T. Bacci, Glow-discharge nitriding and post-oxidising treatments of AISI H11 steel, Surf. Coat. Technol. 162 (2003) 61–66.
[113]K. Singh, R. K. Khatirkar, S. G. Sapate, Microstructure evolution and abrasive wear behavior of D2 steel, Wear. 328 (2015) 206–216.
[114]V. Leskovšek, B. Šuštaršič, G. Jutriša, The influence of austenitizing and tempering temperature on the hardness and fracture toughness of hot-worked H11 tool steel, J. Mater. Process. Technol. 178 (2006) 328–334.
[115]A. Lippitz, T. Hübert, XPS investigations of chromium nitride thin films, Surf. Coat. Technol. 200 (2005) 250–253.
[116]W. Zhao, F. J. DiSalvo, Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure, Chem. Commun. 51 (2015) 4876–4879.
[117]J. Torres, C. C. Perry, S. J. Bransfield, D. H. Fairbrother, Low-temperature oxidation of nitrided iron surfaces, J. Phys. Chem. B. 107 (2003) 5558–5567.
[118]G. Chen, L. Xue, J. Wang, Z. Tang, X. Li, H. Dong, Investigation of surface modifications for combating the molten aluminum corrosion of AISI H13 steel, Corros. Sci. 174 (2020) 108836.
[119]X. Li, X. Zhang, J. Wang, C. Chen, Z. Yao, Z. Jiang, The enhanced catalytic activity and stability of Fe3O4-S@C Fenton-like catalyst for phenol degradation, Res. Chem. Intermed. 47 (2021) 3025–3035.
[120]C. DeAlwis, T. R. Leftwich, P. Mukherjee, A. Denofre, K. A. Perrine, Spontaneous selective deposition of iron oxide nanoparticles on graphite as model catalysts, Nanoscale Adv. 1 (2019) 4729–4744.
[121]J. Baltrusaitis, D. M.Cwiertny, V. H. Grassian, Adsorption of sulfur dioxide on hematite and goethite particle surfaces, Phys. Chem. Chem. Phys. 9 (2007) 5542–5554.
[122]M. Detroye, F. Reniers, C. Buess-Herman, J. Vereecken, AES–XPS study of chromium carbides and chromium iron carbides, Appl. Surf. Sci. 144–145 (1999) 78–82.
[123]S. Zhu, L. Chen, Y. Wu, Y. Hu, T. Liu, K. Tang, Q. Wei, Microstructure and corrosion resistance of Cr/Cr2N multilayer film deposited on the surface of depleted uranium, Corros. Sci. 82 (2014) 420–425.
[124]Z. Gao, Z. Wan, Z. Wu, X. Huang, H. Li, T. F. Zhang, P. H. Mayrhofer, Q. Wang, Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications, Mater. Des. 209 (2021) 109949.
[125]S. Bhattacharyya, S. M. Shivaprasad, N. S. Gajbhiye, Variation of magnetic ordering in ε-Fe3N nanoparticles, Chem. Phys. Lett. 496 (2010) 122–127.
[126]X. Lei, Z. Ye, Y. Qie, Z. Fan, X. Chen, Z. Shi, H. Yang, The synthesis, morphology and magnetic properties of (Fe1−xMnx)3N nanoparticles, J. Mater. Sci. Mater. Electron. 30 (2019) 277–283.
[127]F. Cai, L. Liao, Y. Zhao, D. Li, J. Zeng, F. Yu, H. Zhou, Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting, J. Mater. Chem. A. 9 (2021) 10199–10207.
[128]S. Poulin, R. França, L. Moreau-Bélanger, E. Sacher, Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes, J. Phys. Chem. C. 114 (2010) 10711–10718.
[129]N. A. Eltouny, P. A. Ariya, Fe3O4 nanoparticles and carboxymethyl cellulose: A green option for the removal of atmospheric benzene, toluene, ethylbenzene, and o-Xylene (BTEX), Ind. Eng. Chem. Res. 51 (2012) 12787–12795.
[130]T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (2008) 2441–2449.
[131]閎康科技,https://www.matek.com/zh-TW/services/index/XPS (accessed June10, 2023).
[132]L. Zhong, H. Xu, Z. Yu, K. Yun, Bowl-shaped graphene oxide/Fe3O4 composites on Au-PCB electrode for electrochemical detection of dopamine, Ionics (Kiel). 26 (2020) 4171–4181.
[133]M. Xue, S. Ding, Y. Lai, X. Li, L. Zha, Y. Peng, Z. Liang, W. Yang, Y. Men, X. Kong, L. Han, X. Chen, J. Yang, Exchange bias effect in epitaxial LaMnO3+δ film induced by electron beam irradiation, Adv. Mater. Interfaces. 7 (2020) 1901296.
[134]D. H. Yoon, Y. J. Tak, S. P. Park, J. Jung, H. Lee, H. J. Kim, Simultaneous engineering of the interface and bulk layer of Al/ sol -NiOx /Si structured resistive random access memory devices, J. Mater. Chem. C. 2 (2014) 6148–6154.
[135]D. J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surf. Interface Anal. 47 (2015) 1072–1079.
[136]J. Hong, S. Pancheshnyi, E. Tam, J. J. Lowke, S. Prawer, A. B. Murphy, Kinetic modelling of NH3 production in N2–H2 non-equilibrium atmospheric-pressure plasma catalysis, J. Phys. D. Appl. Phys. 50 (2017) 154005.
[137]K. VanLaer, S. Tinck, V. Samara, J. F. DeMarneffe, A. Bogaerts, Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: modeling and experimental investigation, Plasma Sources Sci. Technol. 22 (2013) 025011.
[138]L. Brinkman, B. Bulfin, A. Steinfeld, Thermochemical hydrogen storage via the reversible reduction and oxidation of metal oxides, Energy and Fuels. 35 (2021) 18756–18767.
[139]J. Wendel, S. K. Manchili, E. Hryha, L. Nyborg, Oxide reduction and oxygen removal in water-atomized iron powder: a kinetic study, J. Therm. Anal. Calorim. 142 (2020) 309–320. https://doi.org/10.1007/S10973-020-09724-6/FIGURES/10.
[140] D. Spreitzer, J. Schenk, Reduction of iron oxides with hydrogen—a review, Steel Res. Int. 90 (2019) 1900108.
[141]H. Shen, L. Wang, Oxide layer formed on AISI 5140 steel by plasma nitriding and post-oxidation in a mixture of air and ammonia, J. Alloys Compd. 806 (2019) 1517–1521.
[142]F. Z. Bouanis, F. Bentiss, M. Traisnel, C. Jama, Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: Gravimetric and electrochemical results, Electrochim. Acta. 54 (2009) 2371–2378.
[143]Y. T. Xi, D. X. Liu, D.Han, Improvement of erosion and erosion–corrosion resistance of AISI 420 stainless steel by low temperature plasma nitriding, Appl. Surf. Sci. 254 (2008)
[144]M. Yazici, O. Çomakli, T. Yetim, A. F. Yetim, A. Çelik, The effect of plasma nitriding temperature on the electrochemical and semiconducting properties of thin passive films formed on 316 L stainless steel implant material in SBF solution, Surf. Coat. Technol. 261 (2015) 181–188.
[145]G. Chi, D. Yi, H. Liu, Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35 °C, J. Mater. Res. Technol. 9 (2020) 1162–1174.
[146]J. F. Rios, J. A. Calderón, R. P. Nogueira, Electrochemical behavior of metals used in drinking water distribution systems: A rotating cylinder electrode’s study, Corrosion. 69 (2013) 875–885.
[147]D. C. Wen, Plasma nitriding of plastic mold steel to increase wear- and corrosion properties, Surf. Coat. Technol. 204 (2009) 511–519.
[148]A. R. Mashreghi, S. M. Y. Soleimani, S. Saberifar, The investigation of wear and corrosion behavior of plasma nitrided DIN 1.2210 cold work tool steel, Mater. Des. 46 (2013) 532–538.
[149]M. Ebrahimi, M. H. Sohi, A. H. Raouf, F. Mahboubi, Effect of plasma nitriding temperature on the corrosion behavior of AISI 4140 steel before and after oxidation, Surf. Coat. Technol. 205 (2010) 261–266.
[150]R. M. Cornell, S. Udo, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley, American, 2006.
[151]L. Preserve, L. Blaney, Magnetite (Fe3O4): Properties, Synthesis, and Applications, Lehigh University, American, 2007.
[152]R. S. Zambare, P. R. Nemade, Ionic liquid-modified graphene oxide sponge for hexavalent chromium removal from water, Colloids Surfaces A Physicochem. Eng. Asp. 609 (2021) 125657.
[153]F. Zhang, M. Yan, Microstructure and wear resistance of in situ formed duplex coating fabricated by plasma nitriding Ti Coated 2024 Al Alloy, J. Mater. Sci. Technol. 30 (2014) 1278–1283.
[154]M. Bahshwan, C. W. Myant, T. Reddyhoff, M. S. Pham, The role of microstructure on wear mechanisms and anisotropy of additively manufactured 316L stainless steel in dry sliding, Mater. Des. 196 (2020) 109076.
[155]M. H. Staia, Y. Pérez-Delgado, C. Sanchez, A. Castro, E. LeBourhis, E. S. Puchi-Cabrera, Hardness properties and high-temperature wear behavior of nitrided AISI D2 tool steel, prior and after PAPVD coating, Wear. 267 (2009) 1452–1461.

無法下載圖示 全文公開日期 2028/08/11 (校內網路)
全文公開日期 2028/08/11 (校外網路)
全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE