簡易檢索 / 詳目顯示

研究生: 邱崇益
Chung-Yi Chiu
論文名稱: 應用GEV分配探討選擇權評價之實證分析 -以臺指選擇權為例
Empirical Study of Option Pricing Based on GEV Distribution: The Case of TXO
指導教授: 莊文議
Wen-I Chuang
林丙輝
Bing-Huei Lin
口試委員: 張光第
Guangdi Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 47
中文關鍵詞: 極值理論選擇權評價
外文關鍵詞: extreme value theory, option pricing, GEV
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在經歷了2007年次級房貸的風暴後,人們再度聚焦於極端事件發生的機率。實證結果顯示金融市場存在著厚尾現象,其意指極端事件發生的次數較某些財務理論(例如: 對數常態分配模型)更為頻繁。此論文應用一般化極值(GEV)模型於風險中立分配(RND),並以此推導出歐式買權與賣權之封閉解。
此模型提供標的物分配更為彈性的峰態與偏態係數,並且不論在in-sample或是out-of-sample中,GEV模型在選擇權評價上,其均方根誤差(RMSE)的表現皆優Black-Scholes 模型。我們同時也呈現GEV模型的三個參數在不同到期期間下的變化,而其中的shape參數決定了分配尾端的厚度。此外我們也推導出在GEV模型下的Delta hedge ratio,並於不同moneyness下,呈現出與Black-Scholes模型避險比率之差異。


Having recently experienced a crisis event -- the 2007 subprime crisis, people refocus on the extreme events which occur with small probability. The empirical results show that the fat tail exist on financial markets, which means the extreme event occurs more often than in some financial theory such as lognormal model. This paper indicates that the Risk Neutral Density (RND) derived from Generalized Extreme Value (GEV) to price option provides a flexible model that captures negative skewness and excess kurtosis of returns.
Either in in-sample or out-of-sample data this paper represents a better performance in the three-parameters GEV model which includes tail shape parameter、location parameter and scale parameter. Of these parameters, we show that tail shape parameter plays an important role to control the size of tail and how the implied tail index to facilitate the fitness of fat tail. We also derive the delta-hedge formula to survey the difference delta between the Black-Scholes model and GEV model.

Chapter 1. Introduction……………………………………………………………3 Chapter 2. Literature review………………………………………………………6 2.1 Risk-Neutral Distribution………………………………………………………………….6 2.2 Generalized Extreme Value Distribution…………………………………………………9 Chapter 3. Methodology………………………………………………………….12 3.1 GEV Option Pricing Model………………………………………………………………12 3.2 Analysis of the GEV Call and Put Option………………………………………………15 Chapter 4. The Empirical Results……………………………………………….19 4.1 Data Description…………………………………………………………………………..19 4.2 Method of Pricing Model…………………………………………………………………20 4.3 Performance Analysis of In-Sample Data……………………………………………….20 4.4 The Analysis of Pricing Bias……………………………………………………………...25 4.5 Out-of-Sample Analysis…………………………………………………………………..28 4.6 Hedging……………………………………………………………………………………31 Chapter 5. Conclusions and Suggestions………………………………………..36 Appendix A Incomplete Gamma Function………………………………………………………..39 Appendix B Derivation of the Put Option Price Equation for ξ>0……………………….….39 Reference……………………………………………………………………………………………...41

1. Abken, P., D. Madan, and S. Ramamurtie, 1996a. “Estimation of Risk-Neutral and Statistical Densities by Hermite Polynomial Approximation: With an Application to Eurodollar Futures Options.” Working paper, Federal Reserve Bank of Atlanta.
2. Ait-Sahalia,Y. and A.W. Lo, 1998. “Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices”, Journal of Finance, 53, 499-547.
3. Aparicio, S. D., and S.D. Hodges, 1998. “Implied Risk-Neutral Distribution: A Comparison of Estimation Methods”, FORC Preprint, University of Warwick.
4. Arrow,K.J, 1964. “The Role of Securities in the Optimal Allocation of Risk-bearing”, The Review of Economic Studies, Vol. 31, No. 2, pp. 91-96.
5. Bali, T. G., 2003. “The generalized extreme value distribution”, Economics Letters 79, 423-427.
6. Black, F. and M. Scholes, 1973. “The Pricing of Options and Corporate Liabilities”, Journal of PoliticalEconomy 81, 637-659.
7. Bliss, R., and N. Panigirtzoglou, 2004. “Option-Implied Risk Aversion Estimates”, Journal of Finance, 59, 407–446.
8. Breeden, D. and R. Litzenberger, 1978. “Prices of State-Contingent Claims Implicit in Option Prices”, Journal of Business, 51, 621-651.
9. Brenner, M., and Y. Eom, 1997. “No-Arbitrage Option Pricing: New Evidence on the Validity of the Martingale Property.” Working paper, New York University.
10. Buchen, P. W. and M. Kelly, 1996. “The maximum entropy distribution of an asset inferred from option prices”, Journal of Financial and Quantitative Analysis, 31, 143-159.
11. Corrado, C.J., 2001. “Option pricing based on the Generalized Lambda Distribution”, Journal of Futtures Markets, 21, 213 – 236.
12. Corrado, C.J. and T. Su, 1997. “Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P500 Index Option Prices”, Journal of Derivatives 4, 8-19.
13. Debreu, G., 1959. “Theory of Value”, Wiley, NY.
14. Embrechts, P., C. Klppelberg and T. Mikosch, 1997. “Modelling Extremal Events for Insurance and Finance”, Berlin: Springer.
15. Fisher, R.A. and L.H.C. Tippett, 1928. “Limiting forms of the frequency distributions of the largest orsmallest member of a sample”, Proceedings of the Cambridge Philosophical Society, 24, 180-190.
16. Gemmill G, and A. Saflekos, 2000. “How Useful are Implied Distributions? Evidence from Stock-Index Options”, Journal of Derivatives 7, 83-98.
17. Harrison, J. M. and S. R. Pliska, 1981. “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Processes Applications, 11, 215-260.
18. Jackwerth, J. C., 1999. “Option-Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review”, the Journal of Derivatives, 7, 66-82.
19. Jarrow, R. and A. Rudd, 1982. “Approximate Option Valuation for Arbitrary Stochastic Processes”, Journal of Financial Economics, 10, 347-369.
20. Jenkinson, A. F., 1955. “The frequency distribution of the annual maximum (or minimum) values ofmeteorological elements”, Quarterly Journal of the Royal Meteorological Society, 87, 158-171.
21. MacBeth, J. and L. Merville, 1979. “An empirical examination of the Black-Scholes call option pricing model”, Journal of Finance 34, 1173–86.
22. Markose, S. and Alentorn, A., 2005. “Option Pricing and the Implied Tail Index with theGeneralized Extreme Value (GEV) Distribution”, Economics Department*Centre of Computational Finance and Economics Agents (CCFEA) #University of Essex
23. Matache, A.M., P.A. Nitsche and C. Schwab, 2004. “Wavelet Galerkin Pricing of American Options on Levy Driven Assets”, Research Report No. 2003-06 ETH Zrich.
24. Melick, W. R. and C. P. Thomas, 1996. “Using Option prices to infer PDFs for asset Prices: An application to oil prices during the gulf war crisis”, International Finance Discussion Paper, No. 541, Board of Governors of the Federal Reserve System.
25. Ritchey, R. J., 1990. “Call Option Valuation for Discrete Normal Mixtures”, Journal of Financial Research, 13, 285-296.
26. Robert C. Merton, 1976. “The Impact on Option Pricing of Specification Error in The Underlying Stock Price Returns.”, The Journal of Finance, Vol.31, No.2.
27. Ross, S, 1976. “Options and Efficiency”, Quarterly Journal of Economics, Vol. 90, pages 75-89.
28. Rubinstein, M., 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978", Journal of Finance, 40, 455-480.
29. Savickas, R., 2002. “A simple option-pricing formula”, The Financial Review, 37, 207-226.
30. Shimko, D, 1993. “Bounds of Probability”, Risk, Vol. 6, 33-37.
31. von Mises, R., 1936. "La Distribution de la Plus Grande de n Valeurs", In Selected Papers of Richard von Mises, 2, 271-294. Providence, RI: American Mathematical Society

無法下載圖示 全文公開日期 2014/07/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE