簡易檢索 / 詳目顯示

研究生: 吳筱涵
Hsiao-Han Wu
論文名稱: 以二氧化鈦光觸媒程序同時氧化還原水溶液As(III)和Cr(VI)金屬離子
Simultaneous Photocatalytic Oxidation and Reduction of As(III) and Cr(VI) Species in Aqueous Solution using TiO2 Photocatalysts
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
劉志成
Jhy-Chern Liu
曾堯宣
Yao-Hsuan Tseng
顧洋
Young Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 181
中文關鍵詞: 光觸媒氧化還原反應六價鉻還原三價砷氧化紫外光發光二極體動力學分析
外文關鍵詞: Photocatalytic redox reactions, Cr(VI) photoreduction, As(III) photooxidation, UV-LED, Kinetic analysis
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用紫外光發光二極體為光源,藉由光觸媒同時催化三價砷的氧化和六價鉻的還原,探討各項實驗操作變因(如:光強度、水溶液pH值、照光週期、初始濃度、自由基抑制劑、共存離子、重複性測試)對三價砷的氧化和六價鉻的還原速率之影響。並透過BET、XRD、SEM、UV-vis DRS和界達電位,進行光觸媒的物化特性之分析。
研究結果顯示,在酸性條件下,與六價鉻和三價砷溶液相比,在六價鉻與三價砷的混合溶液中,三價砷的氧化速率顯著增加,而六價鉻的還原速率有些微降低。此外混合溶液在酸性條件下,通過光催化作用對六價鉻和三價砷的氧化還原反應速率明顯高於鹼性條件。提升光強度會稍微提高六價鉻和三價砷的氧化還原反應速率,但最終會受到溶液中共存離子的影響。觀察到吸附在二氧化鈦表面的六價鉻和三價砷幾乎分別被光氧化還原為三價鉻和五價砷。此外,藉由實驗趨勢推論速率限制步驟為介面電子轉移,並透過推導動力學方程可以很好地模擬六價鉻和三價砷在紫外光發光二極體光催化之氧化還原反應速率。


The reduction of Cr(VI) and oxidation of As(III) in aqueous solution by As(III)/Cr(VI)/TiO2 process was studied under various light intensities, solution pH values, periodic illumination, initial concentration, radical inhibitors, co-existing ions, and recyclability testing. The characterizations of photocatalyst were analyzed by Brunauer-Emmett-Teller surface area measurement (BET), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and zeta potential. Compared to the Cr(VI) and As(III) solution, the oxidation rate of As(III) drastically increases and Cr(VI) slightly decreases in the mixed solution of Cr(VI) and As(III) at pH 3, respectively. The redox reaction rates of Cr(VI) and As(III) by photocatalysis were significantly higher for acidic solutions than those for alkaline solutions. Increasing the light intensity would slightly increase the redox reaction rates of Cr(VI) and As(III), but was ultimately influenced by the co-existing ions present in solutions. The Cr(VI) and As(III) adsorbed on the surface of TiO2 were observed to be photoreduced to Cr(III) and As(V) almost completely. Moreover, the experimental results indicate that the interfacial charge transfer step was rate-determining. Consequently, the photocatalytic redox reactions of Cr(VI) and As(III) by the UV-LED process could be well modeled by the kinetic equation.

中文摘要 Abstract Acknowledgments Table of Content List of Figure List of Table List of Symbol Chapter 1 Introduction 1.1 Background 1.2 Objectives and scope Chapter 2 Literature Review 2.1 Photolysis and Photocatalysis 2.1.1 Basic Properties of TiO2 2.1.2 Modification of TiO2 2.1.3 Fundamentals and Applications of Periodic Illumination for Photocatalysis 2.2 Simultaneous Photoreduction and Photooxidation in the Mixed Solution 2.2.1 Simultaneous Reduction of Cr(VI) and Oxidation of As(III) 2.2.2 Reaction Mechanisms of As(III) 2.2.3 Reaction Mechanisms and Kinetics of Photocatalytic Redox Reactions 2.2.4 Simultaneous Reaction Mechanisms of Cr(VI) and As(III) 2.3 Operating Factors Affecting Photocatalytic Redox Reactions 2.3.1 Solution pH 2.3.2 Light Intensity 2.3.3 Initial Concentration of Target Compound 2.3.4 Co-Existing Ions Chapter 3 Materials and Experiments 3.1 Materials 3.2 Experimental Instruments and Apparatus 3.2.1 Experimental Apparatus 3.2.2 Experimental Instruments 3.3 Experimental Procedures 3.3.1 Experimental Framework 3.3.2 Photocatalyst Synthesis 3.3.3 Simultaneous Photoreduction of Cr(VI) and Photooxidation of As(III) 3.3.4 Periodic Illumination on Photocatalytic Redox Reactions 3.4 Background Experiments Chapter 4 Results and Discussion 4.1 Photoreduction of Cr(VI) and Photooxidation of As(III) under Continuous Illumination 4.1.1 Characterization of Photocatalyst 4.1.2 Effect of Solution pH 4.1.3 Effects of the Different Proportions of Cr(VI) and As(III) Concentration 4.2 Simultaneous Photoreduction of Cr(VI) and Photooxidation of As(III) under Continuous Illumination 4.2.1 Effect of Light Intensity 4.2.2 Effect of Periodic Illumination 4.2.3 Effect of Solution pH 4.2.4 Effects of the Different Proportions of Cr(VI) and As(III) Concentration 4.2.5 Characterization of Photocatalyst after the Reaction 4.2.6 Effect of Radical Inhibitors 4.2.7 Effects of Co-Existing Ions 4.2.8 Recyclability Testing 4.3 Process Chemistry and Kinetic Analysis 4.3.1 Proposed Mechanisms and Kinetic Models 4.3.2 Kinetic Analysis Chapter 5 Conclusion and Recommendation Reference

Aarthi, T., and Madras, G., “Photocatalytic Reduction of Metals in Presence of Combustion Synthesized Nano-TiO2,” Catal. Commun., Vol. 9(5), pp. 630-634 (2008)
Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed A. S, Ahmed, A., and Muneer, M, “Photocatalytic Performance of Fe-doped TiO2 Nanoparticles under Visible-light Irradiation,” Mater. Res. Express, Vol. 4, pp. 15022 (2017)
Ao, C. H., Lee, S. C., Yu, J. Z., and Xu, J. H., “Photodegradation of Formaldehyde by Photocatalyst TiO2: Effects on the Presences of NO, SO2 and VOCs,” Appl. Catal., B, Vol. 54(1), pp. 41-50 (2004)
Bachate, S. P., Nandre, V. S., Ghatpande, N. S., and Kodam, K. M., “Simultaneous Reduction of Cr(VI) and Oxidation of As(III) by Bacillus Firmus TE7 Isolated from Tannery Effluent,” Chemosphere, Vol. 90(8), pp. 2273-2278 (2013)
Bandara, J., Guasaquillo, I., Bowen, P., Soare, L., Jardim, W. F., and Kiwi, J., “Photocatalytic Storing of O2 as H2O2 Mediated by High Surface Area CuO. Evidence for a Reductive-Oxidative Interfacial Mechanism,” Langmuir, Vol. 21(18), pp. 8554-8559 (2005).
Barakat, M. A., “New Trends in Removing Heavy Metals from Industrial Wastewater,” Arabian J. Chem., Vol. 4(4), pp. 361-377 (2011)
Bettinelli, M., Dallacasa, V., Falcomer, D., Fornasiero, P., Gombac, V., Montini, T., Romanò, L., and Speghini, A., “Photocatalytic Activity of TiO2 Doped with Boron and Vanadium,” J. Hazard. Mater., Vol. 146(3), pp. 529-534 (2007)
Buechler, K. J., Zawistowski, T. M., Noble, R. D.,and Koval, C. A., “Investigation of the Mechanism for the Controlled Periodic Illumination Effect in TiO2 Photocatalysis,” Ind. Eng. Chem. Res., Vol. 40(4), pp. 1097-1102. (2001)
Chen, D. and K. Ray, A., “Removal of Toxic Metal Ions from Wastewater by Semiconductor Photocatalysis,” Chem. Eng. Sci., Vol. 56(4), pp. 1561-1570 (2001)
Chen, F., Zou, W., Qu, W. and Zhang, J., “Photocatalytic Performance of a Visible Light TiO2 Photocatalyst Prepared by a Surface Chemical Modification Process,” Catal. Commun., Vol. 10(11), pp. 1510-1513 (2009)
Chen, H. W., Ku, Y., and Irawan, A., “Photodecomposition of O-Cresol by UV-LED/TiO2 Process with Controlled Periodic Illumination,” Chemosphere, Vol. 69(2), pp. 184-190 (2007)
Chen, Y., An, D., Sun, S., Gao, J., and Qian, L., “Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon,” Materials, Vol. 11(2), pp. 269 (2018)
Cheng, W., Ding, C., Wang, X., Wu, Z., Sun, Y., Yu, S., Hayat, T., Wang, X., “Competitive Sorption of As(V) and Cr(VI) on Carbonaceous Nanofibers,” Chem. Eng. J., Vol. 293, pp. 311-318 (2016)
Choi, W., Yeo, J., Ryu, J., Tachikawa, T., Majima, T., “Photocatalytic oxidation mechanism of As(III) on TiO2: unique role of As(III) as a charge recombinant species,” Environ. Sci. Technol., Vol. 44, pp. 9099-9104 (2010)
Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C., “Recent Developments In Photocatalytic Water Treatment Technology: A Review,” Water Res., Vol. 44(10), pp. 2997-3027 (2010)
Cong, Y., Zhang, J., Chen, F., and Anpo, M., “Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity,” J. Phys. Chem. C, Vol. 111(19), pp. 6976-6982 (2007)
Daghrir, R., Drogui, P., and Robert, D., “Modified TiO2 For Environmental Photocatalytic Applications: A Review,” Ind. Eng. Chem. Res., Vol. 52(10), pp. 3581-3599 (2013)
Di Valentin, C., Pacchioni, G., and Selloni, A., “Theory of Carbon Doping of Titanium Dioxide,” Chem. Mater., Vol. 17(26), pp. 6656-6665 (2005)
Dozzi, M. V., Saccomanni, A. and Selli, E., “Cr(VI) Photocatalytic Reduction: Effects of Simultaneous Organics Oxidation and of Gold Nanoparticles Photodeposition on TiO2,” J. Hazard. Mater., Vol. 211-212, pp. 188-195 (2012)
Dutta, P. K., Ray, A. K., Sharma, V. K., and Millero, F. J., “Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions,” J. Colloid Interface Sci., Vol. 278(2), pp. 270-275 (2004)
Dutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., “Photocatalytic Oxidation of Arsenic(III): Evidence of Hydroxyl Radicals,” Environ. Sci. Technol., Vol. 39, pp. 1827-1834 (2005)
Fei, H., Leng, W., Li, X., Cheng, X., Xu, Y., Zhang, J., Cao, C., “Photocatalytic Oxidation of Arsenite Over TiO2: is Superoxide the Main Oxidant in Normal Airsaturated Aqueous Solutions?,” Environ. Sci. Technol., 45, pp. 4532-4539 (2011)
Ferguson, M. A., Hoffmann, M. R., and Hering, J. G., “TiO2-Photocatalyzed As(III) Oxidation in Aqueous Suspensions: Reaction Kinetics and Effects of Adsorption,” Environ. Sci. Technol., Vol. 39(6), pp. 1880-1886 (2005)
Foster, N. S., Koval, C. A., Sczechowski, J. G., and Noble, R. D., “Investigation of Controlled Periodic Illumination Effects on Photo-Oxidation Processes at Titanium Dioxide Films using Rotating Ring Disk Photoelectrochemistry,” J. Electroanal. Chem., Vol. 406(1-2), pp. 213-217 (1996)
Gaudino, S., Galas, C., Belli, M., Barbizzi, S., de Zorzi, P., Jaćimović, R., Jeran, Z., Pati, A., and Sansone, U., “The Role of Different Soil Sample Digestion Methods on Trace Elements Analysis: a Comparison of ICP-MS and INAA Measurement Results,” Accredit. Qual. Assur., Vol. 12(2), pp. 84–93 (2007)
Ghafoor, S., Hussain, S. Z., Waseem, S., and Arshad, S. N., “Photo-Reduction of Heavy Metal Ions and Photo-Disinfection of Pathogenic Bacteria under Simulated Solar Light using Photosensitized TiO2 Nanofibers,” RSC Adv., Vol. 8(36), pp. 20354-20362 (2018)
Gheju, M., Balcu, I., and Mosoarca, G., “Removal of Cr(VI) from Aqueous Solutions by Adsorption on MnO2,” J. Hazard. Mater., Vol. 310, pp. 270-277 (2016)
Gimsing, A. L., Borggaard, O. K., and Sestoft, P., “Modeling the Kinetics of the Competitive Adsorption and Desorption of Glyphosate and Phosphate on Goethite and Gibbsite and in Soils,” Environ. Sci. Technol., Vol. 38(6), pp. 1718-1722 (2004)
Goldberg, S., and Johnston, C. T. “Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling,” J. Colloid Interface Sci., Vol. 234(1), pp. 204–216 (2001)
Gong, X. J., Li, W. G., Zhang, D. Y., Fan, W. B., and Zhang, X. R., “Adsorption of Arsenic from Micro-Polluted Water by an Innovative Coal-Based Mesoporous Activated Carbon in the Presence of Co-Existing Ions,” Int. Biodeterior. Biodegrad., Vol. 102, pp. 256-264 (2015)
Goodeve, C. F. and Kitchener, J. A., “The Mechanism of Photosensitisation by Solids,” Trans. Faraday Soc., Vol. 34, pp. 902 (1938)
Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E., and Herrmann, J. M., “Influence of Chemical Structure of Dyes, of pH and of Inorganic Salts on their Photocatalytic Degradation by TiO2 Comparison of the Efficiency of Powder and Supported TiO2,” J. Photochem. Photobiol., Vol. 158(1), pp. 27-36 (2003)
Han, Z., Chang, V. W., Wang, X., Lim, T. T., and Hildemann, L., “Experimental Study on Visible-Light Induced Photocatalytic Oxidation of gaseous Formaldehyde by Polyester Fiber Supported Photocatalysts,” Chem. Eng. J., Vol. 218, pp. 9-18 (2013)
Harraz, F. A., Abdel-Salam, O. E., Mostafa, A. A., Mohamed, R. M., and Hanafy, M., “Rapid Synthesis of Titania-Silica Nanoparticles Photocatalyst by a Modified Sol-Gel Method for Cyanide Degradation and Heavy Metals Removal,” J. Alloys Compd., Vol. 551, pp. 1-7 (2013)
Hilbrandt, I., Ruhl, A. S., Zietzschmann, F., Molkenthin, M., and Jekel, M., “Competition in Chromate Adsorption onto Micro-Seized Granular Ferric Hydroxide,” Chemosphere, Vol. 218, pp. 749-757 (2019)
Hirakawa, T., Koga, C., Negishi, N., Takeuchi, K., and Matsuzawa, S., “An Approach to Elucidating Photocatalytic Reaction Mechanisms by Monitoring Dissolved Oxygen: Effect of H2O2 on Photocatalysis,” Appl. Catal., B, Vol. 87(1-2), pp. 46-55 (2009).
Ishibashi, K., Fujishima, A., Watanabe, T., and Hashimoto, K., “Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst,” J. Photochem. Photobiol., A, Vol. 134(1-2), pp. 139-142 (2000)
Järup, L., “Hazards of Heavy Metal Contamination,” Brit. Med. Bul., 68(1), pp. 167-182 (2003)
Jegadeesan, G., Al-Abed, S. R., Sundaram, V., Choi, H., Scheckel, K. G., and Dionysiou, D. D., “Arsenic Sorption on TiO2 Nanoparticles: Size and Crystallinity Effects,” Water Res., Vol. 44(3), pp. 965-973 (2010)
Jiang, B., Guo, J., Wang, Z., Zheng, X., Zheng, J., Wu, W., Wu, M., and Xue, Q., “A Green Approach towards Simultaneous Remediations of Chromium(VI) and Arsenic(III) in Aqueous Solution,” Chem. Eng. J., Vol. 262, pp. 1144-1151(2015)
Jiang, B., Liu, Y., Zheng, J., Tan, M., Wang, Z., and Wu, M., “Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions,” Environ. Sci. Technol., Vol. 49(20), pp. 12363-12371 (2015)
Jiang, X. H., Xing, Q. J., Luo, X. B., Li, F., Zou, J. P., Liu, S. S., Li, X., Wang, X. K., “Simultaneous Photoreduction of Uranium(VI) and Photooxidation of Arsenic(III) in Aqueous Solution over g-C3N4/TiO2 Heterostructured Catalysts under Simulated Sunlight Irradiation,” Appl. Catal., B, Vol. 228, pp. 29-38 (2018)
Jiménez, P., Marchal, C., Cottineau, T., Caps, V., and Keller, V., “Influence of Gas Atmosphere During Synthesis of g-C3N4 for Enhanced Photocatalytic H2 Production from Water on Au/g-C3N4 Composites,” J. Mater. Chem. A, Vol. 7, pp. 14849-14863 (2019)
Kim, K., and Choi, W., “Enhanced Redox Conversion of Chromate and Arsenite in Ice,” Environ. Sci. Technol., Vol. 45(6), pp. 2202-2208 (2011)
Kim, S. B. and Hong, S. C., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Appl. Catal., B, Vol. 35, pp. 305-315 (2002)
Kim, S., Hwang, S. J., and Choi, W., “Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst,” J. Phys. Chem. B, Vol. 109(51), pp. 24260-24267 (2005)
Klosek, S. and Raftery, D., “Visible Light Driven V-Doped TiO2 Photocatalyst and its Photooxidation of Ethanol,” J. Phys. Chem. B, Vol. 105(14), 2815-2819 (2001)
Ku, Y., and Jung, I. L., “Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide,” Water Res., Vol. 35(1), pp. 135-142 (2001)
Ku, Y., Lin, C. N., and Hou, W. M., “Characterization of Coupled NiO/TiO2 Photocatalyst for the Photocatalytic Reduction of Cr(VI) in Aqueous Solution,” J. Mol. Catal. A: Chem., Vol. 349(1-2), pp. 20-27 (2011)
Ku, Y., Shiu, S. J., and Wu, H. C., “Decomposition of Dimethyl Phthalate in Aqueous Solution by UV-LED/TiO2 Process under Periodic Illumination,” J. Photochem. Photobiol., A, Vol. 332, pp. 299-305 (2017)
Kumaravel, V., Mathew, S., Bartlett, J., and Pillai, S. C., “Photocatalytic Hydrogen Production using Metal Doped TiO2: A Review of Recent Advances,” Appl. Catal., B, Vol. 244, pp. 1021-1064 (2018)
Kyung, H., Lee, J., and Choi, W., “Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-Light Illumination,” Environ. Sci. Technol., Vol. 39(7), pp. 2376-2382 (2005)
Lee, H., and Choi, W., “Photocatalytic Oxidation of Arsenite in TiO2 Suspension: Kinetics and Mechanisms,” Environ. Sci. Technol., Vol. 36, pp. 3872-3878 (2002)
Lee, S. Y., and Park, S. J., “TiO2 Photocatalyst for Water Treatment Applications,” J. Ind. Eng. Chem., Vol. 19(6), pp. 1761-1769 (2013)
Leng, W.H., Cheng, X.F., Zhang, J.Q., and Cao, C.N., “Comment on "Photocatalytic Oxidation of Arsenite on TiO2: Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors",” Environ. Sci. Technol., Vol. 41, pp. 6311-6312 (2007)
Leng, W.H., Li, X., Fei, H., Zhang, J.Q., and Cao, C.N., “Comment on "Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species",” Environ. Sci. Technol., Vol. 45, pp. 2028-2029, author reply, pp. 2030-2021 (2011)
Li, G., Wong, K. H., Zhang, X., Hu, C., Yu, J. C., Chan, R. C. Y., and Wong, P. K., “Degradation of Acid Orange 7 using Magnetic AgBr under Visible Light: The Roles of Oxidizing Species,” Chemosphere, Vol. 76(9), pp. 1185-1191 (2009)
Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., and Lu, Y., “Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity,” J. Am. Chem. Soc., Vol. 129(15), pp. 4538-4539 (2007)
Li, H., Yin, S., Wang, Y., Sekino, T., Lee, S. W., and Sato, T., “Roles of Cr 3+ Doping and Oxygen Vacancies in SrTiO3 Photocatalysts with High Visible Light Activity for NO Removal,” J. Catal., Vol. 297, 65-69 (2013)
Li, X. Z., Li, F. B., Yang, C. L., and Ge, W. K., “Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation,” J. Photochem. Photobiol., A, Vol. 141(2-3), pp. 209-217 (2001)
Liao, D. L., Wu, G. S., and Liao, B. Q., “Zeta Potential of Shape-Controlled TiO2 Nanoparticles with Surfactants,” Colloids Surf., A, Vol. 348(1-3), pp. 270-275 (2009)
Liu, B., Qiao, M., Wang, Y., Wang, L., Gong, Y., Guo, T., and Zhao, X., “Persulfate Enhanced Photocatalytic Degradation of Bisphenol A by g-C3N4 Nanosheets under Visible Light Irradiation,” Chemosphere, Vol. 189, pp. 115-122 (2017)
Liu, F., Zhang, W., Tao, L., Hao, B., and Zhang, J., “Simultaneously Photocatalytic Redox and Removal of Chromium(VI) and Arsenic(III) by Hydrothermal Carbon-Sphere@Nano-Fe3O4,” Environ. Sci.: Nano, Vol. 6, pp. 937-947 (2019)
Liu, G., Niu, P., Sun, C., Smith, S. C., Chen, Z., Lu, G. Q. and Cheng, H. M., “Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4,” J. Am. Chem. Soc., Vol. 132(33), pp. 11642-11648 (2010)
Liu, H., Zhang, Z. G., He, H. W., Wang, X. X., Zhang, J., Zhang, Q. Q., Tong, Y. F., Liu, H. L., Ramakrishna, S., Yan, S. H., and Long, Y. Z., “One-Step Synthesis Heterostructured g-C3N4/TiO2 Composite for Rapid Degradation of Pollutants in Utilizing Visible Light,” Nanomaterials-Basel, Vol. 8(10), pp. 842 (2018)
Liu, Y., Deng, L., Chen, Y., Wu, F., and Deng, N., “Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Bisphenol A Induced by Fe(III)-OH Complexes in Water,” J. Hazard. Mater., Vol. 139(2), pp. 399-402 (2007)
Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G., and Xu, X., “Effects of Co-existing Ions and Natural Organic Matter on Removal of Chromium (VI) from Aqueous Solution by Nanoscale Zero Valent Iron (nZVI)-Fe3O4 Nanocomposites,” Chem. Eng. J., Vol. 218, pp. 55-64 (2013)
Mangrulkar, P. A., Polshettiwar, V., Labhsetwar, N. K., Varma, R. S., and Rayalu, S. S., “Nano-Ferrites for Water Splitting: Unprecedented High Photocatalytic Hydrogen Production under Visible Light,” Nanoscale, Vol. 4(16), pp. 5202 (2012)
Marinho, B. A., Cristóvão, R. O., Djellabi, R., Loureiro, J. M., Boaventura, R. A. R., and Vilar, V. J. P., “Photocatalytic Reduction of Cr(VI) over TiO2-Coated Cellulose Acetate Monolithic Structures using Solar Light,” Appl. Catal. B: Environ., Vol. 203, pp. 18-30 (2017)
Masel, I. R., “Principles of Adsorption and Reaction on Solid Surfaces,” John Wiley & Sons, Inc., New York (1996)
Mehta, D. S., Saxena, K., Dubey, S. K., and Shakher, C., “Coherence Characteristics of Light-Emitting Diodes,” J. Lumin., Vol. 130(1), pp. 96-102 (2010)
Mohini, R., and Lakshminarasimhan, N., “Coupled Semiconductor Nanocomposite g-C3N4/TiO2 with Enhanced Visible Light Photocatalytic Activity,” Mater. Res. Bull., Vol. 76, pp. 370-375 (2016)
Monga, D., and Basu, S., “Enhanced Photocatalytic Degradation of Industrial Dye by g-C3N4/TiO2 Nanocomposite: Role of Shape of TiO2,” Adv. Powder Technol., Vol. 30, pp. 1089-1098 (2019)
Monllor-Satoca, D., Gomez, R., and Choi, W., “Concentration-Dependent Photoredox Conversion of As(III)/As(V) on Illuminated Titanium Dioxide Electrodes,” Environ. Sci. Technol., Vol. 46, pp. 5519-5527 (2012)
Monllor-Satoca, D.n., Tachikawa, T., Majima, T., and Choi,W., Response to Comment on “Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species,” Environ. Sci. Technol., Vol. 45, pp. 2030-2031 (2011)
Naraginti, S., Thejaswini, T. V. L., Prabhakaran, D., Sivakumar, A., Satyanarayana, V. S. V., and Arun Prasad, A. S., “Enhanced Photo-Catalytic Activity of Sr and Ag Co-Doped TiO2 Nanoparticles for the Degradation of Direct Green-6 and Reactive Blue-160 under UV & Visible Light,” Spectrochim. Acta, Part A, Vol. 149, pp. 571-579 (2015)
Nasir, M., Lei, J., Iqbal, W., and Zhang, J., “Study of Synergistic Effect of Sc and C Co-Doping on the Enhancement of Visible Light Photo-Catalytic Activity of TiO2,” Appl. Surf. Sci., Vol. 364, pp. 446-454 (2016)
Natarajan, K., Natarajan, T. S., Bajaj, H. C., and Tayade, R. J., “Photocatalytic Reactor Based on UV-LED/TiO2 Coated Quartz Tube for Degradation of Dyes,” Chem. Eng. J., Vol. 178, pp. 40-49 (2011)
Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., and Tayade, R. J., “Study on UV-LED/TiO2 Process for Degradation of Rhodamine B Dye,” Chem. Eng. J., Vol. 169(1-3), pp. 126-134 (2011)
Ochiai, T. and Fujishima, A., “Photoelectrochemical Properties of TiO2 Photocatalyst and its Applications for Environmental Purification,” J. Photochem. Photobiol., C, Vol. 13(4), 247-262 (2012)
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura, M. “Preparation of S-doped TiO2 Photocatalysts and their Photocatalytic Activities under Visible Light,” Appl. Catal., A, Vol. 265(1), pp. 115-121 (2004)
Ohno, T., Mitsui, T. and Matsumura, M., “Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light,” Chem. Lett., Vol. 32(4), pp. 364-365 (2003)
Ollis, D. F., Pelizzetti, E., and Serpone, N., “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25(9), pp. 1522-1529 (1991)
Ouyang, R., Lei, J., and Ju, H., “Surface Molecularly Imprinted Nanowire for Protein Specific Recognition,” Chem. Commun., Vol. 44, pp. 5761. (2008)
Park, D., Yun, Y. S., Lee, H. W., and Park, J. M., “Advanced Kinetic Model of the Cr(VI) Removal by Biomaterials at Various pHs and Temperatures,” Bioresour. Technol., Vol. 99(5), pp. 1141-1147 (2008)
Park, H., Park, Y., Kim, W. and Choi, W., “Surface Modification of TiO2 Photocatalyst for Environmental Applications,” J. Photochem. Photobiol., C, Vol. 15, pp. 1-20 (2013)
Patiha, Heraldy, E., Hidayat, Y., and Firdaus, M., “The Langmuir Isotherm Adsorption Equation: The Monolayer Approach,” IOP Conf. Ser. Mater. Sci. Eng., Vol. 107, pp. 012067 (2016)
Paulino, P. N., Salim, V. M. M. and Resende, N. S., “Zn-Cu Promoted TiO2 Photocatalyst for CO2 Reduction with H2O under UV Light,” Appl. Catal., B, Vol. 185, pp. 362-370 (2016)
Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L., and Meng, X., “Adsorption of As(V) and As(III) by Nanocrystalline Titanium Dioxide,” Water Res., Vol. 39(11), pp. 2327-2337 (2005)
Pena, M., Meng, X., Korfiatis, G. P, and Jing, C., “Adsorption Mechanism of Arsenic on Nanocrystalline Titanium Dioxide” Environ. Sci. Technol., Vol. 40, pp. 1257-1262 (2006)
Penke, Y. K., Anantharaman, G., Ramkumar, J., and Kar, K. K, “Aluminum Substituted Cobalt Ferrite (Co-Al-Fe) Nano Adsorbent for Arsenic Adsorption in Aqueous Systems and Detailed Redox Behavior Study with XPS,” ACS Appl. Mater. Interfaces, Vol. 9(13), pp. 11587-11598 (2017)
Ryu, J., Choi, W., “Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides,” Environ. Sci. Technol., Vol. 38, pp. 2928-2933 (2004)
Ryu, J., Choi, W.Y., “Photocatalytic Oxidation of Arsenite on TiO2: Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors,” Environ. Sci. Technol., Vol. 40, pp. 7034-7039 (2006)
Ryu, J., Choi, W.Y., “Response to comment on “photocatalytic oxidation of arsenite on TiO2: understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors,” Environ. Sci. Technol., Vol. 41, pp. 6313-6314 (2007)
Sane, P., Chaudhari, S., Nemade, P., and Sontakke, S., “Photocatalytic Reduction of Chromium (VI) using Combustion Synthesized TiO2,” J. Environ. Chem. Eng., Vol. 6(1), pp. 68-73 (2018)
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D. W., “Understanding TiO2 Photocatalysis: Mechanisms and Materials,” Chem. Rev., Vol. 114(19), pp. 9919-9986 (2014)
Schrank, S. G., José, H. J., and Moreira, R. F. P. M., “Simultaneous Photocatalytic Cr(VI) Reduction and Dye Oxidation in a TiO2 Slurry Reactor,” J. Photochem. Photobiol., A, Vol. 147(1), pp. 71-76 (2002)
Sczechowski, J. G., Koval, C. A., and Noble, R. D., “Evidence of Critical Illumination and Dark Recovery Times for Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis,” J. Photochem. Photobiol., A, Vol. 74(2-3), pp. 273-278 (1993)
Sczechowski, J. G., Koval, C. A., and Noble, R. D., “A Taylor Vortex Reactor for Heterogeneous Photocatalysis,” Chem. Eng. Sci., Vol. 50(20), pp. 3163-3173 (1995)
Seki, H., Suzuki, A., and Maruyama, H., “Biosorption of Chromium(VI) and Arsenic(V) onto Methylated Yeast Biomass,” J. Colloid Interface Sci., Vol. 281(2), pp. 261-266 (2005)
Shalan, A. E., Rashad, M. M., Yu, Y., Lira Cantú, M., and Abdel Mottaleb, M. S. A., “A facile Low Temperature Synthesis of TiO2 Nanorods for High Efficiency Dye Sensitized Solar Cells,” Appl. Phys. A, Vol. 110(1), pp. 111-122 (2012)
Shiraishi, Y., Kanazawa, S., Kofuji, Y., Sakamoto, H., Ichikawa, S., Tanaka, S., and Hirai, T., “Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts,” Angew. Chem. Int. Ed., Vol. 53(49), pp. 13454-13459 (2014).
Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., and Hirai, T., “Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light,” ACS Catal., Vol. 4(3), pp. 774-780 (2014).
Shirzad Siboni, M., Samadi, M. T., Yang, J. K., and Lee, S. M., “Photocatalytic Removal of Cr(VI) and Ni(II) by UV/TiO2: Kinetic Study,” Desalin. Water Treat., Vol. 40(1-3), pp. 77-83 (2012)
Spurr, R. A. and Myers, W., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal. Chem., Vol. 29, pp. 760-762 (1957)
Sun, B., Reddy, E. P. and Smirniotis, P. G., “Visible Light Cr(VI) Reduction and Organic Chemical Oxidation by TiO2 Photocatalysis,” Environ. Sci. Technol., Vol. 39(16), pp. 6251-6259 (2005)
Testa, J. J., Grela, M. A., and Litter, M. I., “Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2,” Langmuir, Vol. 17(12), pp. 3515-3517 (2001)
Tian, Q., Zhuang, J., Wang, J., Xie, Liyan, and Liu, P., “Novel Photocatalyst, Bi2Sn2O7, for Photooxidation of As(III) under Visible-Light Irradiation,” Appl. Catal., A, Vol. 425-426, pp. 74-78 (2012)
Tian, Y., Wu, M., Liu, R., Li, Y., Wang, D., Tan, J., Wu, R., and Huang, Y., “Electrospun Membrane of Cellulose Acetate for Heavy Metal Ion Adsorption in Water Treatment,” Carbohydr. Polym., Vol. 83(2), pp. 743-748 (2011)
Tokode, O. I., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Effect of Controlled Periodic-Based Illumination on the Photonic Efficiency of Photocatalytic Degradation of Methyl Orange,” J. Catal., Vol. 290, pp. 138-142 (2012)
Tokode, O., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Controlled Periodic Illumination in Semiconductor Photocatalysis,” J. Photochem. Photobiol., A, Vol. 319-320, pp. 96-106 (2016)
Toyoda, M., “Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue Decomposition in Water,” Appl. Catal., B, Vol. 49(4), pp. 227-232 (2004)
Tripathi, A., and Narayanan, S., “Impact of TiO2 and TiO2 /g-C3N4 Nanocomposite to Treat Industrial Wastewater,” Environ. Nanotechnol. Monit. Manage., Vol. 10, pp. 280-291 (2018)
Upadhya, S., and Ollis, D. F., “Simple Photocatalysis Model for Photoefficiency Enhancement via Controlled, Periodic Illumination,” J. Phys. Chem., Vol. 101(14), pp. 2625-2631 (1997)
Valentin, C. D., and Selloni, A., “Bulk and Surface Polarons in Photoexcited Anatase TiO2,” J. Phys. Chem. Lett., Vol. 17(2), pp. 2223-2228 (2011)
Vinu, R., and Madras, G. “Kinetics of Simultaneous Photocatalytic Degradation of Phenolic Compounds and Reduction of Metal Ions with Nano-TiO2” Environ. Sci. Technol., Vol. 42(3), pp. 913-919 (2008)
Voegelin, A., and Hug, S. J., “Catalyzed Oxidation of Arsenic(III) by Hydrogen Peroxide on the Surface of Ferrihydrite:  An in Situ ATR-FTIR Study” Environ. Sci. Technol., Vol. 37, pp. 972-978 (2003)
Wang, J., Tafen, D. N., Lewis, J. P., Hong, Z., Manivannan, A., Zhi, M., Li, M., Wu, N., “Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts,” J. Am. Chem. Soc., Vol. 131(34), pp. 12290-12297 (2009)
Wang, L., Wang, N., Zhu, L., Yu, H. and Tang, H., “Photocatalytic Reduction of Cr(VI) over different TiO2 Photocatalysts and the Effects of Dissolved Organic Species,” J. Hazard. Mater., Vol. 152(1), pp. 93-99 (2008)
Wang, N., Xu, Y., Zhu, L., Shen, X., and Tang, H., “Reconsideration to the Deactivation of TiO2 Catalyst During Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Salicylic Acid,” J. Photochem. Photobiol., A, Vol. 201(2-3), pp. 121-127 (2009)
Wang, Z., Bush, R. T., Sullivan, L. A., and Liu, J., “Simultaneous Redox Conversion of Chromium(VI) and Arsenic(III) under Acidic Conditions,” Environ. Sci. Technol., Vol. 47(12), pp. 6486-6492 (2013)
Wang, Z., Murugananthan, M., and Zhang, Y., “Graphitic Carbon Nitride Based Photocatalysis for Redox Conversion of Arsenic(III) and Chromium(VI) in Acid Aqueous Solution,” Appl. Catal., B, Vol. 248, pp. 349-356 (2019)
Wei, Z., Fang, Y., Wang, Z., Liu, Y., Wu, Y., Liang, K., Yan, J., Pan, Z., and Hu, G., “pH Effects of the Arsenite Photocatalytic Oxidation Reaction on Different Anatase TiO2 Facets,” Chemosphere, Vol. 225, pp. 434-442 (2019)
Wu, C. H., and Chern, J. M., “Kinetics of Photocatalytic Decomposition of Methylene Blue,” Ind. Eng. Chem. Res., Vol. 45(19), pp. 6450-6457 (2006)
Wu, D., Sun, S. P., He, M., Wu, Z., Xiao, J., Chen, X. D., and Wu, W. D., “As(V) and Sb(V) Co-Adsorption onto Ferrihydrite: Synergistic Effect of Sb(V) on As(V) under Competitive Conditions,” Environ. Sci. Pollut. R., Vol. 25(15), pp. 14585–14594 (2018)
Wu, Y., Ma, X., Feng, M.,and Liu, M., “Behavior of Chromium and Arsenic on Activated Carbon, ” J. Hazard. Mater., Vol. 159(2-3), pp. 380–384 (2008)
Wu, Y., Wen, Y., Zhou, J., Cao, J., Jin, Y., and Wu, Y., “Comparative and Competitive Adsorption of Cr(VI), As(III), and Ni(II) onto Coconut Charcoal,” Environ. Sci. Pollut. Res., Vol. 20(4), pp. 2210–2219 (2012)
Xu, S. C., Pan, S. S., Xu, Y., Luo, Y. Y., Zhang, Y. X., and Li, G. H., “Efficient Removal of Cr(VI) from Wastewater under Sunlight by Fe(II)-Doped TiO2 Spherical Shell,” J. Hazard. Mater., Vol. 283, pp. 7-13 (2015)
Xu, T., Kamat, P.V., and O'Shea, K.E., “Mechanistic Evaluation of Arsenite Oxidation in TiO2 Assisted Photocatalysis,” J. Phys. Chem. A, Vol. 109, pp. 9070-9075 (2005a)
Xu, T.L., Cai, Y., Mezyk, S.P., and O'Shea, K.E., “The Roles of Hydroxyl Radical, Superoxide Anion Radical, and Hydrogen Peroxide in the Oxidation of Arsenite by Ultrasonic Irradiation,” Adv. Arsenic Res., Vol. 915, pp. 333-343 (2005b)
Yan, L., Du, J., and Jing, C., “How TiO2 Facets Determine Arsenic Adsorption and Photooxidation: Spectroscopic and DFT Studies,” Catal. Sci. Technol., Vol. 6, pp. 2419-2426 (2016)
Yan, L., Hu, S., and Jing, C., “Recent Progress of Arsenic Adsorption on TiO2 in the Presence of Coexisting Ions: A Review,” J. Environ. Sci., Vol. 49, pp. 74–85 (2016)
Yan, S. C., Li, Z. S., and Zou, Z. G., “Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine,” Langmuir, Vol. 25(17), pp. 10397-10401 (2009)
Yeşilova, E., Osman, B., Kara, A., and Tümay Özer, E., “Molecularly Imprinted Particle Embedded Composite Cryogel for Selective Tetracycline Adsorption,” Sep. Purif. Technol., Vol. 200, pp. 155-163 (2018)
Yoon, S. H., Oh, S. E., Yang, J.E., Lee, J. H., Lee, M., Yu, S., and Pak, D., “TiO2 Photocatalytic Oxidation Mechanism of As(III),” Environ. Sci. Technol., Vol. 43, pp. 864-869 (2009)
Yoon, S.H., and Lee, J.H., “Oxidation Mechanism of As(III) in the UV/TiO2 System: Evidence for a Direct Hole Oxidation Mechanism,” Environ. Sci. Technol., Vol. 39, pp. 9695-9701 (2005)
Yu, L., Ma, Y., Ong, C. N., Xie, J., and Liu, Y., “Rapid Adsorption Removal of Arsenate by Hydrous Cerium Oxide-Graphene Composite,” RSC Adv., Vol. 5(80), pp. 64983-64990 (2015)
Yu, L., Peng, X., Ni, F., Li, J., Wang, D., and Luan, Z., “Arsenite Removal from Aqueous Solutions by γ-Fe2O3-TiO2 Magnetic Nanoparticles Through Simultaneous Photocatalytic Oxidation and Adsorption,” J. Hazard. Mater., Vol. 246-247, pp. 10-17 (2013)
Zeng, J., Qi, P., Shi, J., Pichler, T., Wang, F., Wang, Y., and Sui, K., “Chitosan Functionalized Iron Nanosheet for Enhanced Removal of As(III) and Sb(III): Synergistic Effect and Mechanism,” Chem. Eng. J., Vol. 382, pp. 122999, (2019)
Zhang, Y., Yang, M., and Huang, X., “Arsenic(V) Removal with a Ce(IV)-Doped Iron Oxide Adsorbent,” Chemosphere, Vol. 51(9), 945-952 (2003)
Zhang, Y., Zhang, W., Yang, K., Yang, Y., Jia, J., Liang, Y., and Guo, L., “Carbon Nano-Onions (CNOs)/TiO2 Composite Preparation and Its Photocatalytic Performance under Visible Light Irradiation,” J. Environ. Eng., Vol. 146(4), pp. 1943-7870 (2020)
Zhou, Z., Yu, Y., Ding, Z., Zuo, M.,and Jing, C., “Competitive Adsorption of Arsenic and Fluoride on {2 0 1} TiO2,” Appl. Surf. Sci., Vol. 466, pp. 425-432 (2019)
Zong, H., Zhao, T., Zhou, G., Qian, R., Feng, T., and Pan, J. H., “Revisiting Structural and Photocatalytic Properties of g-C3N4/TiO2: Is Surface Modification of TiO2 by Calcination with Urea an Effective route to “Solar” Photocatalyst?,” Catal. Today, Vol. 335, pp. 252-261 (2019)

無法下載圖示 全文公開日期 2025/08/03 (校內網路)
全文公開日期 2025/08/03 (校外網路)
全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE