簡易檢索 / 詳目顯示

研究生: 程庭榆
Ting-Yu Cheng
論文名稱: 高吸附性能之β-幾丁聚醣/多胺官能化氧化石墨烯複合發泡材移除反應性染料
Fabrication of β-Chitosan/Polyamine Functionalized Graphene Oxide Hybrid Foams with Highly Efficient Adsorption Performance for Reactive Dye
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: β-幾丁聚醣氧化石墨烯三乙烯四胺吸附染料廢水處理
外文關鍵詞: β-chitosan, Graphene oxide, Triethylenetetramine, Adsorption, Dye, Effluent treatment
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在此研究中,β-幾丁聚醣(Chitosan)作為主要反應物,其吸附機制是透過大量的官能基(Hydroxy and amino groups)進行吸附,但其材料在熱與酸性環境下不穩定以及機械強度不足,所以利用氧化石墨烯 (Graphene oxide)提高材料性能,Graphene oxide擁有高比表面積及穩定性佳之外,利用它表面上的含氧官能基進行氮胺基改質,改善其團聚的問題並且增加表面活性位點,並用傅立葉變換紅外光譜、拉曼光譜、元素分析、界達電位、掃描電子顯微鏡證明成功合成三乙烯四胺官能化氧化石墨烯(TFGO)。我們使用冷凍乾燥技術製備發泡材,因吸附材在發泡材型態時,可藉由延展表面增加吸附位點,因此,比較了無孔幾丁聚醣(Non-porous chitosan)、多孔幾丁聚醣發泡材(Chitosan foam)與多孔幾丁聚醣/三乙烯四胺官能化氧化石墨烯發泡材(CS/TFGO foam)的吸附能力,在室溫下固定一小時pH值2至10做吸附測試,Non-porous chitosan吸附容量從96.05mg/g至53.24 mg/g、Chitosan foam吸附容量從1022.76mg/g至187.18 mg/g而CS/TFGO foam吸附容量從1672.09 mg/g至997.81 mg/g,由此的知CS/TFGO foam吸附染料的能力得到明顯的提升尤其是在鹼性的環境下,有望應用於工業廢水處理。


In this study, we report a facile method for preparing high porosity hybrid foams through the use of a hybrid β-chitosan (BC)/graphene oxide (GO) template by freeze-drying process. The CS as the main adsorbent agent that adsorption mechanism through a large number of functional groups in chitosan derivatives (amino group and hydroxyl group) for organic C.I. Reactive Red 195 dye (RB195) adsorption. Besides, the graphene oxide (GO) consist of large surface area and mechanical stability to improve chitosan derivatives properties due to CS is unstable under acidity, low thermal stability, and lack of mechanical properties. The surface functional groups of GO can be functionalized by triethylenetetramine (TETA) that show improvement in functional groups, surface active sites and prevent the aggregation of GO platelets into larger species forms. TETA functionalized graphene oxide (TFGO) were analyzed with Fourier transform infrared spectroscopy (FTIR), Raman spectra, elemental analyses (EA), zeta potential and scanning electron microscope (SEM) to demonstrate the successful synthesis. In addition, freeze dryer could been prepared foams from CS/TFGO solutions that increase the adsorption site by stretching the surface. Therefore, compare the adsorption capacity of non-porous CS, CS foam (high porosity) and CS/TFGO foam (high porosity) with pH 2 to 10 for 1 h at 25oC. The adsorption capacity for the RB195 dye of non-porous CS from 96.05 mg/g to 53.24 mg/g, CS foam from 1022.76mg/g to 187.18 mg/g and CS/TFGO foam from 1672.09 mg/g to 997.81 mg/g. CS/TFGO foam shows adsorption capacity is improved, especially under weak alkaline conditions and it is expected to be applied for industrial effluent treatment.

目錄 誌謝......................................................I 摘要......................................................III ABSTRACT..................................................V 目錄......................................................VII 圖目錄....................................................XI 表目錄....................................................XIV 第一章 緒論.............................................. 1 1.1 前言...............................................1 1.2 研究目的.......................................... 2 第二章 文獻回顧...........................................4 2.1 幾丁聚醣(Chitosan, CS).............................4 2.1.1 幾丁聚醣介紹.......................................4 2.1.2 幾丁聚醣結構與特性............................. ....4 2.1.3 幾丁聚醣應用.................................... ...6 2.1.4 幾丁聚醣吸附機制....................................7 2.2 氧化石墨烯(Graphene oxide, GO)..................... 9 2.2.1 石墨烯介紹..........................................9 2.2.2 氧化石墨烯介紹......................................9 2.2.3 氧化石墨烯結構與特性................................10 2.2.4 氧化石墨烯改質......................................11 2.2.5 氧化石墨烯應用......................................11 2.2.6 氧化石墨烯吸附機制..................................12 2.3 染料(Dye)..........................................13 2.3.1 染料之介紹.........................................13 2.3.2 染料之分類及應用....................................14 2.3.3 反應性染料的結構與特性...............................15 2.4 吸附現象(Adsorption phenomenon).....................17 2.4.1 吸附現象發展歷史.....................................17 2.4.2 吸附原理............................................18 2.4.3 影響吸附的因素.......................................20 2.4.4 吸附現象的應用.......................................21 2.5 冷凍真空乾燥法(Freeze dryer).........................23 2.5.1 冷凍乾燥機原理.......................................23 2.5.2 冷凍乾燥機的應用.....................................24 第三章 實驗材料與方法.......................................25 3.1 實驗藥品與耗材.......................................25 3.2 實驗設備.............................................27 3.3 實驗的流程圖.........................................28 3.4 實驗步驟 ............................................31 3.4.1製備多孔幾丁聚醣發泡材與無孔幾丁聚醣......................31 3.4.2製備幾丁聚醣/三乙烯四胺官能化氧化石墨烯發泡材..............32 3.4.2-1三乙烯四胺官能化氧化石墨烯(TFGO)之合成..................32 3.4.2-2製備幾丁聚醣/三乙烯四胺官能化氧化石墨烯發泡材............33 3.5 分析儀器.............................................35 第四章 結論與討論...........................................38 4.1比較多孔幾丁聚醣發泡材與無孔幾丁聚醣的吸附能力...............38 4.1.1 流變儀鑑定幾丁聚醣溶液濃度與黏度的變化....................38 4.1.2 SEM鑑定多孔幾丁聚醣發泡材與無孔幾丁聚醣形貌...............40 4.1.3 UV-Vis鑑定在不同pH下吸附能力的影響.......................42 4.2 比較幾丁聚醣發泡材與CS/TFGO 發泡材的吸附能力................46 4.2.1 三乙烯四胺官能化氧化石墨烯之合成與分析....................46 4.2.1.1 SEM鑑定GO與TFGO之形貌.................................48 4.2.1.2 TEM鑑定GO與TFGO之分散.................................49 4.2.1.3 FT-IR 鑑定TFGO的合成..................................51 4.2.1.4 Raman 鑑定GO與TFGO....................................52 4.2.1.5 元素分析鑑定GO與TFGO...................................55 4.2.1.6 界達電位鑑定GO與TFGO...................................56 4.2.2 比較幾丁聚醣發泡材與CS/TFGO發泡材的吸附能力................58 4.2.2.1 SEM鑑定CS/TFGO發泡材形貌...............................58 4.2.2.2 UV-Vis鑑定在不同pH下吸附能力的影響......................59 4.2.2.3 UV-Vis鑑定吸附動力學...................................62 4.2.2.4 UV-Vis鑑定等溫吸附模型..................................69 4.2.2.5 UV-Vis鑑定吸附熱力學....................................75 4.2.2.6 SEM鑑定染料附著於吸附材之形貌............................79 第五章 結論與未來展望..........................................83 第六章 參考文獻................................................85

1. Xing, J. Wang, X. Xun, J. Peng, J. Xu, Q. Zhang, W. Lou, T., Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydr Polym 2018, 198, 69-75.
2. Dos Santos, J. M. N, Pereira. C. R. Pinto, L. A. A, Frantz, T. Lima, E. C. Foletto, E. L. Dotto, G. L., Synthesis of a novel CoFe2O4/chitosan magnetic composite for fast adsorption of indigotine blue dye. Carbohydr Polym 2019, 217, 6-14.
3. Ma, J. Lei, Y. Khan, M. A. Wang, F. Chu, Y. Lei, W. Xia, M. Zhu, S., Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int J Biol Macromol 2019, 124, 557-567.
4. Zhai, L. Bai, Z. Zhu, Y. Wang, B. Luo, W., Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chinese Journal of Chemical Engineering 2018, 26 (3), 657-666.
5. Sun, Y. Yang, Y. Yang, M. Yu, F. Ma, J., Response surface methodological evaluation and optimization for adsorption removal of ciprofloxacin onto graphene hydrogel. Journal of Molecular Liquids 2019, 284, 124-130.
6. Zhao, B. Sun, X. Wang, L. Zhao, L.Zhang, Z. Li, J., Adsorption of methyl orange from aqueous solution by composite magnetic microspheres of chitosan and quaternary ammonium chitosan derivative. Chinese Journal of Chemical Engineering 2018.
7. Zhou, Y. Lu, J. Zhou, Y. Liu, Y., Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut 2019, 352-365.
8. Kyzas, G. Z. Deliyanni, E. A. Bikiaris, D. N. Mitropoulos, A. C., Graphene composites as dye adsorbents: Review. Chemical Engineering Research and Design 2018, 129, 75-88.
9. Ranjan, P.; Balakrishnan, J. Thakur, A. D., Dye Adsorption Behavior of Graphene Oxide. Materials Today: Proceedings 2019, 11, 833-836.
10. Wang, S. Li, X. Liu, Y. Zhang, C. Tan, X. Zeng, G. Song, B. Jiang, L., Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review. J Hazard Mater 2018, 342, 177-191.
11. Cho, D. W. Jeon, B. H. Chon, C. M. Schwartz, F. W. Jeong, Y. Song, H., Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. Journal of Industrial and Engineering Chemistry 2015, 28, 60-66.
12. Sakkayawong, N. Thiravetyan, P. Nakbanpote, W., Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 2005, 286 (1), 36-42.
13. Uzun, I., Kinetics of the adsorption of reactive dyes by chitosan. Dyes and Pigments 2006, 70 (2), 76-83.
14. Marrakchi, F. Khanday, W. A. Asif, M. Hameed, B. H., Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol 2016, 1231-1239.
15. Obeid, L. Bee, A. Talbot, D. Ben Jaafar, S. Dupuis, V. Abramson, S. Cabuil, V. Welschbillig, M., Chitosan/maghemite composite: a magsorbent for the adsorption of methyl orange. J Colloid Interface Sci 2013, 410, 52-8.
16. Wan Ngah, W. S. Teong, L. C. Hanafiah, M. A. K. M., Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 2011, 83 (4), 1446-1456.
17. Ruan, C. Q. Stromme, M. Lindh, J., Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr Polym 2018, 181, 200-207.
18. Wei, Y. Huang, W. Zhou, Y. Zhang, S. Hua, D. Zhu, X., Modification of chitosan with carboxyl-functionalized ionic liquid for anion adsorption. Int J Biol Macromol 2013, 62, 365-9.
19. Van den Broek, L. A. Knoop, R. J. Kappen, F. H.; Boeriu, C. G., Chitosan films and blends for packaging material. Carbohydr Polym 2015, 116, 237-42.
20. Avcu, E. Baştan, F. E. Abdullah, H. Z. Rehman, M. A. U. Avcu, Y. Y. Boccaccini, A. R., Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Progress in Materials Science 2019, 103, 69-108.
21. Safdar, R. Omar, A. A. Arunagiri, A. Regupathi, I. Thanabalan, M., Potential of Chitosan and its derivatives for controlled drug release applications – A review. Journal of Drug Delivery Science and Technology 2019, 49, 642-659.
22. Depan, D. Girase, B. Shah, J. S. Misra, R. D., Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 2011, 7 (9), 3432-45.
23. Kassem, A. Ayoub, G. M. Malaeb, L., Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Sci Total Environ 2019, 668, 566-576.
24. Yuan, X. Zheng, J. Jiao, S. Cheng, G. Feng, C. Du, Y.; Liu, H., A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019, 220, 60-70.
25. Mujtaba, M. Morsi, R. E. Kerch, G. Elsabee, M. Z. Kaya, M. Labidi, J. Khawar, K. M., Current advancements in chitosan-based film production for food technology; A review. Int J Biol Macromol 2019, 121, 889-904.
26. Dutta, J. Tripathi, S. Dutta, P. K., Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int 2012, 18 (1), 3-34.
27. Monier, M., Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base. Int J Biol Macromol 2012, 50 (3), 773-81.
28. Negm, N. A. El Sheikh, R. El-Farargy, A. F. Hefni, H. H. H Bekhit, M., Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. Journal of Industrial and Engineering Chemistry 2015, 21, 526-534.
29. Darvishi Cheshmeh Soltani, R Khataee, A. R. Safari, M. Joo, S. W., Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. International Biodeterioration & Biodegradation 2013, 85, 383-391.
30. Kołodyńska, D., Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chemical Engineering Journal 2012, 179, 33-43.
31. Yamani, J. S. Lounsbury, A. W. Zimmerman, J. B., Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex. Water Res 2016, 88, 889-896.
32. Cai, Y. Zheng, L. Fang, Z., Selective adsorption of Cu(ii) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor. RSC Advances 2015, 5 (118), 97435-97445.
33. Bée, A. Obeid, L. Mbolantenaina, R. Welschbillig, M. Talbot, D., Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. Journal of Magnetism and Magnetic Materials 2017, 421, 59-64.
34. Ren, Y. Abbood, H. A. He, F. Peng, H. Huang, K., Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal 2013, 226, 300-311.
35. Crini, G. Badot, P.-M., Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science 2008, 33 (4), 399-447.
36. De Silva, K. K. H. Huang, H. H. Joshi, R. K. Yoshimura, M., Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190-199.
37. Yaseen, S. A. Yiseen, G. A. Li, Z., Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide. Journal of Solid State Chemistry 2018, 262, 127-134.
38. De Mendonça, J. P. A. Lima, A. H. Roldao, J. C. Martins, J. d. S. Junqueira, G. M. A. Quirino, W. G. Sato, F., The role of sulfate in the chemical synthesis of graphene oxide. Materials Chemistry and Physics 2018, 215, 203-210.
39. Bharathidasan, P. Balarabe Idris, M. Kim, D. W. Sivakkumar, S. R. Devaraj, S., Exploiting the chemistry of redox active compounds to enhance the capacitance of reduced graphene oxide. FlatChem 2019, 15, 100108.
40. Chen et al., Research Progress on Application of Graphene and Its Composite Material. Material Sciences 2015, 05 (03), 62-71.
41. Ling, S., Structure and Synthesis of Graphene Oxide. Chinese Journal of Chemical Engineering 2019.
42. White, R. L. White, C. M. Turgut, H. Massoud, A. Tian, Z. R., Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 2018, 85, 18-28.
43. A. Gaashani, R. Najjar, A. Zakaria, Y. Mansour, S. Atieh, M. A., XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International 2019, 45 (11), 14439-14448.
44. Phiri, J. Johansson, L. S. Gane, P. Maloney, T., A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Composites Part B: Engineering 2018, 147, 104-113.
45. Smith, A. T. LaChance, A. M. Zeng, S. Liu, B. Sun, L., Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science 2019, 1 (1), 31-47.
46. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, S. Mishra, M., Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry 2018, 8 (2), 123-137.
47. Saroyan, H. Ntagiou, D. Samanidou, V. Deliyanni, E., Modified graphene oxide as manganese oxide support for bisphenol A degradation. Chemosphere 2019, 225, 524-534.
48. Alrashed, M. M. Soucek, M. D. Jana, S. C., Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. Progress in Organic Coatings 2019, 134, 197-208.
49. Luo, D. Zhang, F. Ren, Z. Ren, W. Yu, L. Jiang, L. Ren, B. Wang, L. Wang, Z. Yu, Y. Zhang, Q. Ren, Z., An Improved Method to Synthesize Nanoscale Graphene Oxide Using Much Less Acid. Materials Today Physics 2019, 100097.
50. Hortêncio Munhoz Jr, A. Romero Filho, M. De Arruda Kleist, H. Dias Moreno, G. Oliva de Oliveira, M. Meneghetti Peres, R. Vincenza Rossi, M. Figueiredo de Miranda, L. Rodrigues Ribeiro, R. Filipe Carmelino Cardoso Sarmento, B., Synthesis of pseudoboehmite-graphene oxide for drug delivery system. Materials Today: Proceedings 2019, 14, 700-707.
51. Kumawat, M. K. Thakur, M. Bahadur, R. Kaku, T. R.S, P. Ninawe, A. Srivastava, R., Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Materials Science and Engineering: C 2019, 103, 109774.
52. Ahmad, H. Fan, M. Hui, D., Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering 2018, 145, 270-280.
53. Sengupta, I. Bhattacharya, P. Talukdar, M. Neogi, S. Pal, S. K. Chakraborty, S., Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid and Interface Science Communications 2019, 28, 60-68.
54. Yang, Z. Qin, L. Yang, D. Hu, Q. Jin, J., A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma. Bioorg Med Chem Lett 2019.
55. Nasrollahzadeh, M. Babaei, F. Fakhri, P. Jaleh, B., Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Advances 2015, 5 (14), 10782-10789.
56. Lim, J. Y. Mubarak, N. M. Abdullah, E. C. Nizamuddin, S. Khalid, M.; Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry 2018, 66, 29-44.
57. Tu, T. H. Cam, P. T. N. Huy, L. V. T. Phong, M. T. Nam, H. M. Hieu, N. H., Synthesis and application of graphene oxide aerogel as an adsorbent for removal of dyes from water. Materials Letters 2019, 238, 134-137.
58. Liu, C. Liu, H. Zhang, K. Dou, M. Pan, B. He, X. Lu, C., Partly reduced graphene oxide aerogels induced by proanthocyanidins for efficient dye removal. Bioresour Technol 2019, 282, 148-155.
59. Ranjan, P. Verma, P. Agrawal, S. Rao, T. R. Samanta, S. K. Thakur, A. D., Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Materials Chemistry and Physics 2019, 226, 350-355.
60. Molla, A. Li, Y. Mandal, B. Kang, S. G. Hur, S. H. Chung, J. S., Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Applied Surface Science 2019, 464, 170-177.
61. Wei, M. P. Chai, H. Cao, Y. L. Jia, D. Z., Sulfonated graphene oxide as an adsorbent for removal of Pb(2+) and methylene blue. J Colloid Interface Sci 2018, 524, 297-305.
62. Tran, H. N. Wang, Y. F. You, S. J. Chao, H. P., Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions. Process Safety and Environmental Protection 2017, 107, 168-180.
63. Jiang, H. Hu, Q. Cai, J. Cui, Z Zheng, J. Chen, W., Synthesis and dyeing properties of indophenine dyes for polyester fabrics. Dyes and Pigments 2019, 166, 130-139.
64. Fröse, A Schmidtke, K. Sukmann, T. Juhász Junger, I. Ehrmann, A., Application of natural dyes on diverse textile materials. Optik 2019, 181, 215-219.
65. Kim, T. Seo, B. Park, G. Lee, Y. W., Effects of dye particle size and dissolution rate on the overall dye uptake in supercritical dyeing process. The Journal of Supercritical Fluids 2019, 151, 1-7.
66. Nandhini, N. T. Rajeshkumar, S. Mythili, S., The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatalysis and Agricultural Biotechnology 2019, 19, 101138.
67. Shinde, S. Sekar, N., Synthesis, spectroscopic characteristics, dyeing performance and TD-DFT study of quinolone based red emitting acid azo dyes. Dyes and Pigments 2019, 168, 12-27.
68. Siddiqua, U. H. Ali, S. Iqbal, M. Hussain, T., Relationship between structure and dyeing properties of reactive dyes for cotton dyeing. Journal of Molecular Liquids 2017, 241, 839-844.
69. Richhariya, G. Kumar, A., Fabrication and characterization of mixed dye: Natural and synthetic organic dye. Optical Materials 2018, 79, 296-301.
70. Tan, K. B. Vakili, M. Horri, B. A. Poh, P. E. Abdullah, A. Z. Salamatinia, B., Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology 2015, 150, 229-242.
71. Burkinshaw, S. M. Salihu, G., The role of auxiliaries in the immersion dyeing of textile fibres: Part 9 practical aspects of the role of inorganic electrolytes in dyeing cellulosic fibres with pure reactive dyes. Dyes and Pigments 2019, 161, 628-641.
72. Zhang, K. Xie, R. Fang, K. Chen, W. Shi, Z. Ren, Y., Effects of reactive dye structures on surface tensions and viscosities of dye solutions. Journal of Molecular Liquids 2019, 287, 110932.
73. Zhang, H. Yang, H. Xie, K. Hou, A. Gao, A., Novel reactive dyes with intramolecular color matching combination containing different chromophores. Dyes and Pigments 2018, 159, 576-583.
74. Burkinshaw, S. M. Salihu, G., The role of auxiliaries in the immersion dyeing of textile fibres: Part 10 the influence of inorganic electrolyte on the wash-off of reactive dyes. Dyes and Pigments 2018, 149, 652-661.
75. Shu, D. Fang, K. Liu, X. Cai, Y. An, F., High Dye Fixation Pad-Steam Dyeing of Cotton Fabrics with Reactive Dyes Based on Hydrophobic Effect. Journal of Natural Fibers 2018, 1-11.
76. Yao, C. Chen, T., An improved regression method for kinetics of adsorption from aqueous solutions. Journal of Water Process Engineering 2019, 31, 100840.
77. Yeo, T. H. C. Tan, I. A. W. Abdullah, M. O., Development of adsorption air-conditioning technology using modified activated carbon – A review. Renewable and Sustainable Energy Reviews 2012, 16 (5), 3355-3363.
78. Gotzias, A. Kouvelos, E. Sapalidis, A., Computing the temperature dependence of adsorption selectivity in porous solids. Surface and Coatings Technology 2018, 350, 95-100.
79. Gritti, F. Guiochon, G., Limits of the numerical estimation of the adsorption energy distribution from adsorption isotherm data using the expectation-maximization method. J Chromatogr A 2007, 1144 (2), 208-20.
80. Koopal, L. Tan, W. Avena, M., Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019.
81. Tan, S. J. Loi, Q. K. Do, D. D. Nicholson, D., On the canonical isotherms for bulk fluid, surface adsorption and adsorption in pores: A common thread. J Colloid Interface Sci 2019, 548, 25-36.
82. Wu, X. f. Hu, Y. L. Zhao, F. Huang, Z. Z. Lei, D., Ion adsorption components in liquid/solid systems. Journal of Environmental Sciences 2006, 18 (6), 1167-1175.
83. Zhang, R. Somasundaran, P., Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 2006, 123-126, 213-29.
84. Zhang, Y. P. Adi, V. S. K. Huang, H. L. Lin, H. P. Huang, Z. H., Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry 2019, 76, 240-244.
85. Lipatov, Y. Chornaya, V. Todosijchuk, T. Menzheres, G., Energy of adsorption interaction and surface coverage from polymer of various molecular structures. J Colloid Interface Sci 2006, 294 (2), 273-80.
86. Shi, W. Li, M. Jiang, C. Shen, J. Li, K. Zhang, S. Zhang, J. Han, D., Adsorption-selectivity customization and competitive adsorption of tryptamine-based mixed-mode chromatography. Biochemical Engineering Journal 2019, 150, 107267.
87. Bello, M. M. Raman, A. A., Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environmental Chemistry Letters 2018, 17 (2), 1125-1142.
88. Liao, B. Sun, W. Y. Guo, N. Ding, S. L. Su, S. J., Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 501, 32-41.
89. Oleyar, C. Talbot, J., Reversible adsorption on a random site surface. Physica A: Statistical Mechanics and its Applications 2007, 376, 27-37.
90. Baran, A. Bicak, E. Baysal, S. H. Onal, S., Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresour Technol 2007, 98 (3), 661-5.
91. Idahosa, P. E. G. Oluyemi, G. F. Oyeneyin, M. B. Prabhu, R., Rate-dependent polymer adsorption in porous media. Journal of Petroleum Science and Engineering 2016, 143, 65-71.
92. An, H. J. Sarker, M. Yoo, D. K. Jhung, S. H., Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chemical Engineering Journal 2019, 373, 1064-1071.
93. Dai, Y. Zhang, N Xing, C. Cui, Q. Sun, Q., The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12-27.
94. Elsayed, A. M. Askalany, A. A. Shea, A. D. Dakkama, H. J. Mahmoud, S. Al-Dadah, R. Kaialy, W., A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications. Renewable and Sustainable Energy Reviews 2017, 79, 503-519.
95. Ahmed, I. Jhung, S. H., Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today 2014, 17 (3), 136-146.
96. Do, J. Cha, D. Park, I. Kwon, O. K. Bae, J. Park, J., Hydrothermal synthesis and application of adsorbent coating for adsorption chiller. Progress in Organic Coatings 2019, 128, 59-68.
97. Ho, M. H. Kuo, P. Y. Hsieh, H. J. Hsien, T. Y. Hou, L. T. Lai, J. Y.; Wang, D. M., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004, 25 (1), 129-138.
98. Hardwick, L. M. Nail, S. L. Jarman, J. Hasler, K. Hense, T., A proposed rationale and test methodology for establishment of acceptance criteria for vacuum integrity testing of pharmaceutical freeze dryers. Eur J Pharm Biopharm 2013, 85 (2), 236-9.
99. Wu, H. Y. Sun, C. B. Liu, N., Effects of different cryoprotectants on microemulsion freeze-drying. Innovative Food Science & Emerging Technologies 2019, 54, 28-33.
100. Berk, Z., Freeze Drying (Lyophilization) and Freeze Concentration. 2013, 567-581.
101. Yu, K. C. Chen, C. C. Wu, P. C., Research on application and rehydration rate of vacuum freeze drying of rice. Journal of Applied Sciences 2011, 11 (3), 535-541.
102. Ciurzyńska, A. Jasiorowska, A. Ostrowska-Ligęza, E. Lenart, A., The influence of the structure on the sorption properties and phase transition temperatures of freeze-dried gels. Journal of Food Engineering 2019, 252, 18-27.
103. Fissore, D. Gallo, G. Ruggiero, A. E. Thompson, T. N., On the use of a micro freeze-dryer for the investigation of the primary drying stage of a freeze-drying process. Eur J Pharm Biopharm 2019.
104. Ren, Q. Feng, L. Fan, R. Ge, X. Sun, Y., Water-dispersible triethylenetetramine-functionalized graphene: Preparation, characterization and application as an amperometric glucose sensor. Materials Science and Engineering: C 2016, 68, 308-316.
105. Wang, M. Ma, Y. Sun, Y. Hong, S. Y.; Lee, S. K. Yoon, B. Chen, L. Ci, L. Nam, J. D. Chen, X. Suhr, J., Hierarchical Porous Chitosan Sponges as Robust and Recyclable Adsorbents for Anionic Dye Adsorption. Sci Rep 2017, 7 (1), 18054.
106. Li, Z. Meng, X. Zhang, Z., Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Materials Research Bulletin 2019, 111, 238-244.
107. Zaheer, Z. AbuBaker Bawazir, W. Al-Bukhari, S. M. Basaleh, A. S., Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics 2019, 232, 109-120.
108. Bruna, M. Ott, A. K. Ijas, M. Yoon, D. Sassi, U. Ferrari, A. C., Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8 (7), 7432-7441.
109. Claramunt, S. Varea, A. Lopez-Diaz, D. Velazquez, M. M. Cornet, A. Cirera, A., The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119 (18), 10123-10129.
110. Tran, H. N. You, S. J. Hosseini Bandegharaei, A. Chao, H. P., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res 2017, 120, 88-116.
111. Guo, X. Wang, J., A general kinetic model for adsorption: Theoretical analysis and modeling. Journal of Molecular Liquids 2019, 288, 111100.
112. Ouaissa, Y. A. Chabani, M. Amrane, A. Bensmaili, A., Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering 2014, 2 (1), 177-184.
113. Vadivelan, V. Kumar, K. V., Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 2005, 286 (1), 90-100.
114. Azizian, S. Eris, S. Wilson, L. D., Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chemical Physics 2018, 513, 99-104.
115. Poursaeidesfahani, A. Andres-Garcia, E. de Lange, M. Torres-Knoop, A. Rigutto, M. Nair, N. Kapteijn, F. Gascon, J. Dubbeldam, D. Vlugt, T. J. H., Prediction of adsorption isotherms from breakthrough curves. Microporous and Mesoporous Materials 2019, 277, 237-244.
116. Chowdhury, S. Mishra, R. Saha, P. Kushwaha, P., Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265 (1-3), 159-168.
117. Alkan, M. Demirbas, O. Celikcapa, S. Dogan, M., Sorption of acid red 57 from aqueous solution onto sepiolite. J Hazard Mater 2004, 116 (1-2), 135-45.

無法下載圖示 全文公開日期 2024/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE