簡易檢索 / 詳目顯示

研究生: 何長洲
Chang-Chou Ho
論文名稱: 丙烯腈寡聚物基複合電解質及其鋰金屬固態電池充放電表現
Composite electrolytes based on acrylonitrile oligomer and their cycle performances of lithium metal solid-state battery
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳崇賢
Chorng-Shyan Chern
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 123
中文關鍵詞: 聚丙烯腈固態鋰金屬電池固態聚合物電解質複合電解質可逆加成-斷裂鏈轉移法
外文關鍵詞: polyacrylonitrile, solid-state lithium battery, solid polymer electrolyte, composite electrolyte, reversible addition-fragmentation chain transfer polymerization
相關次數: 點閱:368下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

丙烯腈(AN)為單體,共聚合2-丙烯酸十二烷基酯(DA),利用可逆加成-斷裂鏈轉移法(RAFT)控制分子量,合成之寡聚物,含丙烯腈、丙烯酸十二烷基酯及硫代羰基殘基;此主鏈較短之寡聚物分子量1736 g mol1,約20-30個單元所組成,添加鋰鹽後玻璃轉化溫度(Tg)為39 ℃。
複合電解質以聚丙烯腈寡聚物(PAN)為主要導電相,材料組成包括,自製PAN寡聚物,聚偏二氟乙烯(PVdF)長鏈高分子,雙氟磺酼亞胺鋰鹽(LiFSI),石榴石結構鋰鑭鋯鉭氧(LLZTO)粉末。因為控制分子量使PAN寡聚物缺乏機械強度及介電強度,所以添加PVdF以補強電解質這兩方面,研究中我們合成兩種複合電解質,自撐形式的電解質標膜材示作PAN-FS,另一種電極塗層的電解質膜材標示作PAN-EC。
PAN-FS及PAN-EC固態電解質的鋰離子遷移數與電位窗口很相似,鋰離子遷移數0.32-0.35,電位窗口為4.7 V,但兩者的組成不盡相同,因PAN-FS擁有較高含量的PVdF,使其能有充分的機械強度,並能獨立成膜,而PAN-FS的PAN含量低於PAN-EC,PAN-FS的導電性不如PAN-EC。在25 C室溫PAN-FS導電率為3.14×104 S cm1,而PAN-EC則為4.38×104 S cm1。
固態鋰離子電池的組合包括,鋰鎳鈷錳三元正極材料 (NMC622)、磷酸鋰鐵材料(LFP)作為陰極,鋰金屬作為陽極,NMC622電池操作電位窗口為2.8-4.2 V;LFP電池操作電位窗口為2.0-4.0 V,充放電深度100%,Li│PAN-EC│NMC622 電池0.1C放電容量150.1 mAh g1,Li│PAN-FS│NMC622電池0.1C放電容量178.3 mAh g1,並且充放電104個循環,Li│PAN-EC│LFP電池0.1C放電容量146.4 mAh g1,Li│PAN-FS│LFP電池0.1C放電容量169.3 mAh g1;0.2C放電容量達148.9 mAh g1並且充放電115個循環,可以得知使用PAN-FS電解質擁有較高的放電容量,並且使用LFP作為陰極有較長得循環壽命。
PAN寡聚物作為導電相之固態電解質,充放電循環百圈附近就會發生漏電情形,後續添加了PUA寡聚物來改善漏電情形,Li│PANPUA-FS│LFP電池0.1C放電容量163.1 mAh g−1;0.3C放電容量130.2 mAh g−1;0.5C放電容量110.9 mAh g−1,且充放電超過550個循環,得知添加PUA之後改善漏電問題能延長循環壽命。


Acrylonitrile (AN) based oligomer has been copolymerized with dodecyl acrylate (DA) using reversible addition-fragmentation chain transfer (RAFT) polymerization to control the degree of polymerization. A high molar fraction of RAFT agent in polymerization recipe results in an oligomer with low molecular weight 1736 g mol−1. This oligomer has a short main chain of 20-30 acrylonitrile units. When the oligomer is mixed with plasticizer LiFSI, its glass transition temperature, Tg, decreases to 39°C.
Two composite electrolytes, PAN-FS and PAN-EC, have been prepared, containing an in-house oligomer of poly acrylonitrile (PAN), long-chain PVdF, LiFSI lithium salt, and LLZTO additive. PAN-FS denotes the free-standing membrane electrolyte, and PAN-EC indicates the electrode-coated membrane electrolyte.
The two composite electrolytes share a high level of similarity in lithium transference number (tLi+) and potential window (U); tLi+=0.32-0.35, U =4.7 V. However, the composition of the two is not the same. PAN-FS has a higher content of PVdF, it can have sufficient mechanical strength and can form a film independently. Hence, The PAN content of PAN-FS is lower than PUA-EC, and the conductivity of PAN-FS is not as good as PAN-EC. At room temperature, the conductivity of PAN-FS is 3.14×10−4 S cm−1, PAN-EC is 4.38×10−4 S cm−1.
The solid-state lithium batteries are assembled with lithium metal as the anode, and the cathode of either nickel manganese cobalt ternary oxide (NMC622), lithium iron phosphate (LFP). NMC622 battery is charged and discharged between 2.8-4.2 V; on the other hand, the LFP battery is operated between 2.0-4.0 V. For the Li│PAN-EC│NMC622 battery, the maximum capacity at 0.1C is 150.1 mAh g−1 and Li│PAN-FS│NMC622 battery, the maximum capacity at 0.1C is 178.3 mAh g−1, and the current cycle number is 104. For the Li│PAN-EC│LFP battery, the maximum capacity at 0.1C is 146.4 mAh g−1. For the Li│PAN-FS│LFP battery, the maximum capacity at 0.1C is 169.3 mAh g−1 .The maximum capacity at 0.2C is 148.9 mAh g−1, and the current cycle number is 115. It can be seen that the use of PAN-FS electrolyte has a higher discharge capacity than PAN-EC, and the use of LFP as the cathode has a longer cycle life than NMC622. However, the current leakage usually occurs around 100 cycles, when the composite membrane electrolyte contains PAN as the sole oligomer. To resolve the current leakage problem, another PUA oligomer is added in the PAN-based composite membrane. For the Li│PANPUA-FS│LFP battery, the maximum capacity at 0.1C is 163.1 mAh g−1. The maximum capacity at 0.3C is 130.2 mAh g1. The maximum capacity at 0.5C is 110.9 mAh g1, and the current cycle number exceeds 550.

摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 8 2.1固態電解質 8 2.2聚合物電解質 11 2.3聚丙烯腈 13 2.4添加陶瓷材料至聚合物電解質的改質 14 2.5可逆加成-斷裂鏈轉移聚合法(RAFT) 16 第三章 實驗方法與步驟 18 3.1 實驗藥品與儀器設備 18 3.1.1 實驗藥品 18 3.1.2 實驗儀器與設備 20 3.1.3 材料鑑定與儀器設備 22 3.1.4 電化學測試儀器與設備 23 3.2 實驗流程圖 24 3.2.1 以可逆加成斷鏈鏈轉移合成聚合法合成聚丙烯腈 24 3.2.2 電極塗佈電解質 (PAN-EC)製作鈕扣電池 25 3.2.3 自我支撐性電解質 (PAN-FS)製作鈕扣電池 26 3.2.4 電化學量測組裝 27 3.2.4.1 EC結構電解質及電池量測 27 3.2.4.2 FS結構電解質及電池量測 28 3.2.5 電化學分析 29 3.3 實驗方法 30 3.3.1 Poly(AN-co-DA)寡聚物固態電解質合成 30 3.3.2 CR2032電池組前置處理 31 3.3.3正極材料製備 31 3.3.3.1 正極製備(NMC 622) 31 3.3.3.2 正極製備(LiFePO4) 31 3.3.4 PAN-EC固態複合電解質離子導電率電池製備 32 3.3.5 PAN-EC固態複合電解質電位窗口電池製備 32 3.3.6 PAN-EC固態複合電解質鋰離子遷移常數電池製備 33 3.3.7 PAN-EC固態鋰金屬電池製備 34 3.3.8 PAN-FS固態複合電解質離子導電率電池製備 34 3.3.9 PAN-FS固態複合電解質電位窗口電池製備 35 3.3.10 PAN-FS固態複合電解質鋰離子遷移常數電池製備 35 3.3.11 PAN-FS固態鋰離子電池製備 36 3.4固態複合電解質材料鑑定與分析 37 3.4.1寡聚物分子量分析 37 3.4.2差示掃描量熱法(DSC) 38 3.4.4高解析度場發射掃描式電子顯微鏡(SEM) 38 3.5固態複合電解質電化學特性分析 39 3.5.1交流阻抗分析(AC Impedance) 39 3.5.2循環伏安法(Cyclic Voltammetry) 40 3.5.3鋰離子遷移數 (T+ Number) 41 3.5.4固態鋰金屬電池製備 42 第四章 結果與討論 43 4.1 Poly(AN-co-DA)分子量量測 43 4.2玻璃轉化溫度(Tg) 46 4.3複合電解質橫截面與表面SEM分析 50 4.3.1複合電解質EC SEM分析 50 4.3.2複合電解質FS SEM分析 52 4.4離子導電率 55 4.4.1複合電解質PAN-EC之離子導電率 55 4.4.2複合電解質PAN-FS之離子導電率 57 4.5循環伏安法(Cyclic Voltammetry) 61 4.6鋰離子遷移常數(T+ Number) 65 4.7固態鋰離子電池測試 69 4.7.1 PAN寡聚物固態鋰金屬電池充放電表現 70 4.7.2 PAN-EC(未含PVdF)電解質固態鋰金屬電池充放電表現 72 4.7.3 PAN複合電解質固態鋰金屬電池充放電表現 74 4.7.3.1複合電解質固態鋰金屬電池Li│PAN-EC│NMC622 74 4.7.3.2 Li│PAN-EC│NMC622 固態鋰金屬電池之Rate capacity 77 4.7.3.3複合電解質固態鋰金屬電池Li│PAN-EC│LiFePO4 78 4.7.3.4 Li│PAN-EC│LiFePO4 固態鋰金屬電池之Rate capacity 80 4.3.7.5複合電解質固態鋰金屬電池Li│PAN-FS│NMC622 81 4.3.7.6 Li│PAN-FS│NMC622 固態鋰金屬電池之Rate capacity 84 4.7.3.7複合電解質固態鋰金屬電池Li│PAN-FS│LiFePO4 85 4.7.3.8 Li│PAN-FS│LiFePO4 固態鋰金屬電池之Rate capacity .91 4.7.4 PAN添加PUA、PVdF、LLZTO陶瓷粉末固態鋰金屬電池充放電表現 92 第五章 結論 100 參考文獻 102

1. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6), 783-789.
2. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983, 18(4), 461-472.
3.Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997, 144(4) 1188-1194.
4. Goodenough, J.B. and K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 2013, 135(4), 1167-1176.
5. Mindemark, J., et al., Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81, 114-143.
6. Yu, G., et al., Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries. Sustainable Energy & Fuels, 2021, 5(4), 1211-1221.
7. Zhao, Y.R., et al., A promising PEO/LAGP. hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics, 2016, 295, 65-71.
8. Ding, F., et al., Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135(11), 4450-4456.
9. Cao, D., et al., Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3(1), 57-94.
10. Alarco, P.-J., et al., The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature Materials, 2004, 3(7), 476-481.
11. Fan, L.Z., et al., Succinonitrile as a Versatile Additive for Polymer Electrolytes. Advanced Functional Materials, 2007, 17(15), 2800-2807.
12. Choi, K.-H., et al., Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1(17), 5224-5231.
13. Ha, H.-J., et al., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science, 2012, 5(4), 6491-6499.
14. Kim, S.-H., et al., A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2(28), 10854-10861.
15. Choi, K.-H., et al., Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries. Advanced Functional Materials, 2014, 24(1), 44-52.
16. Zhou, D., et al., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 2019, 5(9), 2326-2352.
17. Hu, P., et al., Progress in nitrile-based polymer electrolyte for high performance lithium batteries. J. Mater. Chem. A, 2016, 4.
18. Perera, K.S., et al., Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2008, 12(7), 873-877.
19. Peramunage, D., D.M. Pasquariello, and K.M. Abraham, Polyacrylonitrile‐Based Electrolytes with Ternary Solvent Mixtures as Plasticizers. Journal of The Electrochemical Society, 1995, 142(6), 1789-1798.
20. Choe, H.S., et al., Characterization of Some Polyacrylonitrile-Based Electrolytes. Chemistry of Materials, 1997, 9(1), 369-379.
21. Lee, K.-H., J.-K. Park, and W.-J. Kim, Electrochemical characteristics of PAN ionomer based polymer electrolytes. Electrochimica Acta, 2000, 45(8), 1301-1306.
22. Xu, H., et al., Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ionics, 2020, 347, 115227.
23. Sim, L.N., et al., Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide for application in electrochromic device. Electrochimica Acta, 2017, 229, 22-30.
24. Zhang, X., et al., Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics, 2018, 327, 32-38.
25. Lowe, A.B. and C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007, 32(3), 283-351.
26. Semsarilar, M. and S. Perrier, 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem, 2010, 2(10), 811-20.
27. Moad, G., E. Rizzardo, and S.H. Thang, RAFT polymerization and some of its applications. Chem Asian J, 2013, 8(8), 1634-44.
28. Pal, P. and A. Ghosh, Robust Succinonitrile Plastic Crystal-Based Ionogel for All-Solid-State Li-Ion and Dual-Ion Batteries. ACS Applied Energy Materials, 2020, 3(5), 4295-4304.
29. Park, K.H., et al., Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Advanced Energy Materials, 2018, 8(18), 1800035.
30. Tarascon, J.M. and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 2001, 414, 359-67.
31. Kerman, K., et al., Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society, 2017, 164(7), A1731-A1744.
32. Meesala, Y., et al., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2017, 2(12), 2734-2751.
33. Manthiram, A., X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2(4), 16103.
34. Yang, J., et al., High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation. Frontiers in Chemistry, 2019, 7(388).
35. Ye, L. and Z. Feng, Polymer electrolytes as solid solvents and their applications. 2010, 550-582.
36. Li, L., et al., Self-heating–induced healing of lithium dendrites. Science, 2018, 359(6383), 1513.
37. Han, S., et al., Succinonitrile as a high-voltage additive in the electrolyte of LiNi0.5Co0.2Mn0.3O2/graphite full batteries. Surface and Interface Analysis, 2020, 52(6), 364-373.
38. Kim, G.-Y. and J.R. Dahn, The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A437-A447.
39. Huang, B., et al., Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics, 1996, 85, 79-84.
40. Chen, B., et al., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochimica Acta, 2016, 210, 905-914.
41. Capuano, F., F. Croce, and B. Scrosati, Composite Polymer Electrolytes. Journal of The Electrochemical Society, 1991, 138(7), 1918-1922.
42. Appetecchi, G.B., S. Scaccia, and S. Passerini, Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. Journal of The Electrochemical Society, 2000, 147(12), 4448.
43. Bronstein, L.M., et al., Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 2004, 14(12), 1812-1820.
44. Croce, F., et al., Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394(6692), 456-458.
45. Zheng, J. and Y.-Y. Hu, New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Applied Materials & Interfaces, 2018, 10(4), 4113-4120.
46. Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules, 1998, 31(16), 5559-5562.
47. Chong, Y.K., et al., A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:  The RAFT Process. Macromolecules, 1999, 32(6), 2071-2074.
48. Kusuma, R.I., C.-T. Lin, and C.-S. Chern, Kinetics of reversible addition–fragmentation transfer (RAFT) miniemulsion polymerization of styrene using dibenzyl trithiocarbonate as RAFT reagent and costabilizer. Polymer International, 2015, 64(10), 1389-1398.
49. 邱俊榮. 丙烯腈寡聚物膜作為固態鋰電池電解質之合成及量測.國立臺灣科技大學, 台北市, 2020.
50. Onyon, P.F., The molecular weight-viscosity relation for polyacrylonitrile. Journal of Polymer Science, 1956, 22(100), 13-18.
51. Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987, 28(13), 2324-2328.
52. Diederichsen, K.M., H.G. Buss, and B.D. McCloskey, The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes. Macromolecules, 2017, 50(10), 3831-3840.
53. Rani, M., et al., Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber. Polymers, 2014, 6(9), 2371-2385.
54. Kufian, M.Z. and S.R. Majid, Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics, 2009, 16(5), 409-416.
55. He, C., et al., Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries. Journal of Membrane Science, 2018, 560, 30-37.
56. Zhou, D., et al., In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries. Advanced Energy Materials, 2015, 5(15), 1500353.
57. Zugmann, S., et al., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011, 56(11), 3926-3933.
58. Buriez, O., et al., Performance limitations of polymer electrolytes based on ethylene oxide polymers. Journal of Power Sources, 2000, 89(2), 149-155.
59. Hiller, M.M., et al., The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochimica Acta, 2013, 114, 21-29.
60. Zhang, J., et al., Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers. New Journal of Chemistry, 2011, 35(3), 614-621.

QR CODE