簡易檢索 / 詳目顯示

研究生: 邱政傑
Cheng-Chieh Chiu
論文名稱: 沉積氮化鈦島狀結構應用於 表面拉曼散射基材
Dense Titanium Nitride Islands Coating for Surface-Enhanced Raman Scattering Substrates
指導教授: 周賢鎧
Shyankay Jou
口試委員: 郭鴻飛
Hungfei Kuo
蔡豐羽
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 156
中文關鍵詞: 表面拉曼散射拉曼光譜氮化鈦密集島狀結構
外文關鍵詞: surface-enhanced Raman scattering, Raman spectroscopy, titanium nitride, dense arrays of islands
相關次數: 點閱:259下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究密集堆積氮化鈦(TiN)不連續薄膜結構應用於表面拉曼散射基材,利用脈衝射頻磁控濺鍍方式製備氮化鈦島狀結構於石英玻璃基材上,探討氮化鈦島狀結構對消光光譜之消光波長及拉曼散射光譜影響。
我們利用脈衝射頻磁控濺鍍通入工作氣體氬氣(Ar)與氮氣(N2)比例為30 : 3.5,工作壓力為3.99 Pa (3×10–2 torr),基板溫度為200 oC及基板旋轉速率8 #/min下,沈積密集氮化鈦島狀結構於石英玻璃基材(10 × 10 × 0.5 mm3),並藉由改變總鍍膜時間(Ttotal)、脈衝頻率(Pulse Frequency)、工作比例(Duty ratio)等條件,控制氮化鈦島狀結構得到有極佳拉曼散射增強基材。當使用脈衝射頻功率80W、脈衝頻率為1000 Hz、工作比例60%、總鍍膜時間15 min,得到最佳的氮化鈦島狀結構之拉曼散射基材。此氮化鈦島狀結構之拉曼散射基材顆粒大小為13.4 ± 1.0 nm、相鄰間距為 1.5 ± 0.3 nm,消光光光譜最大消光波長位置為497 nm。另外將此氮化鈦島狀結構之拉曼散射基材固定受測分子R6G (濃度10-5 M),受雷射光波長532 nm照射的拉曼散射訊號,與固定受測分子R6G (濃度10-3 M)於石英玻璃基材受雷射光波長532 nm激發的拉曼散射訊號作為基準,透過公式計算出拉曼散射光譜訊號增幅比值(Enhancement Factor, EF)大於104。
最後為了解TiN島狀結構之SERS基材的拉曼散射光譜增強訊號均勻度,故利用20× 20× 0.5 mm3石英玻璃試片選取16個不同位置做拉曼光譜分析,以拉曼光譜訊號為779 cm-1做討論,其平均拉曼散射光譜訊號增強比值為43912,標準差為6972。


This thesis studied surface-enhanced Raman scattering (SERS) substrates consisting dense arrays of titanium nitride (TiN) islands. We prepared TiN coatings on a quartz glass of 10 × 10 × 0.5 mm3 by RF magnetron sputter deposition and investigated their of extinction spectra and Raman scattering spectra.
We deposited dense TiN islands using pulse RF magnetron sputter on 200 oC quartz substrate under flowing of Ar and N2 (gas ratio of 30:3.5), working pressure of 3.99 Pa (3×10–2 torr) and substrate rotation speed of 8 #/min. Controlling total sputtering time (Ttotal), pulse frequency and duty ratio could lead to nanostructure TiN islands with enhanced Raman scattering character. The experiments proved that using RF power of 80 W, pulse frequency of 1000 Hz, duty ratio of 60 % and total sputtering time of 15 min resulted in the TiN islands with better Raman scattering performance. The average sizes of the TiN islands were 13.4 ± 1.0 nm and the spacing between TiN islands was around 1.5 ± 0.3 nm. The TiN islands thin film had an extinction peak at around 497 nm, which related to surface plasmon resonance. By comparing Raman scattering intensity of the TiN islands substrate absorbed with 10-5 M rhodamine 6G (R6G) solution and that of 10-3 M R6G-absorbed reference substrate using 532 nm laser, an enhancement factor (EF) greater than 104 was obtained.
In order to understand the uniformity of the TiN islands, Raman scattering spectrum was recorded from 16 different positions on a 20 × 20 × 0.5 mm3 Raman substrate. Raman scattering signal of 779 cm-1 peaks had an average EF of 43912 and standard deviation of 6972.

摘要 .................................................................................................................................................... I Abstract ............................................................................................................................................ II 致謝 ................................................................................................................................................. IV 目錄 ................................................................................................................................................... V 圖目錄 .............................................................................................................................................. X 表目錄 ......................................................................................................................................... XXI 第一章 緒論 ................................................................................................................................... 1 1.1 前言 .................................................................................................................................. 1 1.2 研究動機 ......................................................................................................................... 2 第二章 文獻回顧 ......................................................................................................................... 3 2.1 基本理論 ......................................................................................................................... 3 2.1.1 拉曼散射歷史背景 ............................................................................................. 3 2.1.2 拉曼散射理論 ....................................................................................................... 3 2.1.3 拉曼散射光譜 ....................................................................................................... 8 2.2 真空薄膜製程 ............................................................................................................... 9 2.2.1 真空鍍膜簡介 ....................................................................................................... 9 2.2.2 電漿特性 ................................................................................................................. 9 2.2.3 濺鍍原理 .............................................................................................................. 10 2.2.4 磁控式濺鍍 .......................................................................................................... 11 2.3 薄膜沈積原理 ............................................................................................................. 13 2.3.1 沈積原理 .............................................................................................................. 13 2.3.2 薄膜形成 .............................................................................................................. 14 2.3.2.1 成核過程 ...................................................................................................... 14 2.3.2.2 成長過程 ...................................................................................................... 16 2.3.2.3 濺鍍參數控制 ............................................................................................. 18 2.3.3 Thornton 模型 .................................................................................................... 19 2.4 表面電漿基本理論 ................................................................................................... 20 2.4.1 表面電漿共振模式 ........................................................................................... 20 2.4.2 表面增強拉曼之物理機制 ............................................................................. 20 2.4.3 表面增強拉曼之化學機制 ............................................................................. 23 2.4.4 金屬奈米粒子的吸收光譜 ............................................................................. 25 2.5 傳統金屬與金屬氮化物之SERS效應 .............................................................. 28 2.5.1 簡介 ........................................................................................................................ 28 2.5.2 1-D SERS基材 .................................................................................................... 29 2.5.2.1 1-D Ag奈米鏈自我排列結構之SERS基材 ...................................... 29 2.5.2.1 1-D Ag奈米盤狀排列結構之SERS基材 ........................................... 31 2.5.3 2-D SERS基材 .................................................................................................... 33 2.5.3.1 2-D Au/Ag多孔性有序密集排列結構之SERS基材 ..................... 33 2.5.3.2 2-D Au有序排列結構之SERS基材 .................................................... 35 2.5.3.3 2-D Au島嶼狀排列結構之SERS基材 ............................................... 36 2.5.4 3-D SERS基材 .................................................................................................... 38 2.5.4.1 3-D Ag樹枝狀結構之SERS基材 ......................................................... 38 2.5.4.2 3-D Au奈米顆粒裝飾於光纖結構陣列式Al2O3奈米管之SERS基材 ....................................................................................................................... 40 2.5.5 兩相鄰Ag奈米結構間距與SERS增強效果之關係 .......................... 42 2.5.6 不同微觀尺度SERS基材之拉曼增強比值範圍 ............................... 44 2.5.7超穎材料(Metamaterials)以及過渡金屬氮化物(Transition-metal nitride)與透明導電氧化物(Transparent conducting oxides, TCOs)簡介 ........................................................................................................................ 47 2.5.7.1 氮化鈦(Titanium nitride, TiNx)結構及基本性質 .................. 48 2.5.7.2 氮化鈦(Titanium nitride, TiNx)作為表面電漿共振之研究 .. 50 2.5.7.2-1 TiNx 薄膜以不同Ar:N2比例濺鍍之介電函數 ................... 50 2.5.7.2-2 TiNx 薄膜沈積於不同基材溫度下之介電函數 ..................... 51 2.5.7.2-3 TiNx 薄膜沈積於不同基材下之介電函數 ............................... 52 2.5.7.2-4 Ag, Au及TiNx 介電函數研究 .................................................... 53 2.5.7.2-5 TiNx SPR效應 ..................................................................................... 54 2.5.7.2-6 TiNx SERS 效應 ................................................................................. 55 2.5.8 新的電漿子材料TiN選用 ........................................................................ 58 第三章 實驗步驟與方法 ......................................................................................................... 59 3.1 實驗材料與藥品規格 .......................................................................................... 59 3.2 實驗用儀器與設備 .............................................................................................. 60 3.2.1 實驗用儀器 .................................................................................................... 60 3.2.1.1 磁控濺鍍系統 .......................................................................................... 61 3.2.2 實驗用分析儀器 ........................................................................................... 62 3.2.2.1 場發射掃描式電子顯微鏡(Field Emission Gun Scanning Electron Microscopy, FEG-SEM) ........................................................................ 63 3.2.2.2 橢圓偏光儀(Ellipsometer) ........................................................... 64 3.2.2.3 X-ray電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) .. 65 3.2.2.4紫外光可見光光譜儀(Ultraviolet-Visible Spectrophotometer, UV-vis) ..................................................................................................... 65 3.2.2.5拉曼光譜儀(Raman Spectrometer) ............................................ 66 3.2.2.6 Sigmascan Pro軟體分析SEM表面形貌 ..................................... 68 3.3 實驗步驟 .................................................................................................................. 69 3.3.1試片清洗 ........................................................................................................... 70 第四章 結果與討論 .................................................................................................................. 71 4.1 TiN連續薄膜特性 ................................................................................................ 71 4.1.1 TiN 連續薄膜微觀結構分析 .................................................................... 71 4.1.2 TiN連續薄膜之XRD分析 ........................................................................ 72 4.1.3 TiN連續薄膜之XPS縱深分析 ............................................................... 73 4.1.4 TiN連續薄膜主要元素蹤深疊圖分析 .................................................. 75 4.1.5 TiN連續薄膜介電函數實數項與虛數項分析 ................................... 88 4.1.6 TiN連續薄膜電阻係數及載子濃度分析 ............................................. 89 4.2 TiN島狀結構之表面拉曼散射 ........................................................................ 91 4.2.1 控制鍍膜時間對TiN島狀結構影響 .................................................... 91 4.2.2 控制鍍膜時間對TiN 島狀結構之光學性質分析 ........................... 94 4.3 控制脈衝頻率及工作比例對TiN島狀結構影響 ................................... 98 4.3.1脈衝頻率為500 Hz,改變工作比例對TiN島狀結構影響.............. 98 4.3.2 脈衝頻率為500 Hz,改變工作比例對TiN島狀結構之光學性質 分析....................................................................................................................... 103 4.3.3 脈衝頻率為1000 Hz,改變工作比例對TiN島狀結構影響.......... 108 4.3.4脈衝頻率為1000 Hz,改變工作比例對TiN島狀結構之光學性質 分析 .................................................................................................................. 113 4.4改變脈衝式射頻電源供應器之工作比例,在固定總實際濺鍍時間(Ton,total)下對總實際濺鍍時間(Ton,total)及總未濺鍍時間(Toff,total)影響 ......................................................................................................................... 117 4.4.1改變脈衝式射頻電源供應器之工作比例下,固定總實際濺鍍時間(Ton,total)對TiN島狀結構影響 ................................................................ 118 4.4.2改變脈衝式射頻電源供應器之工作比例下,固定總實際濺鍍時間(Ton,total)對TiN島狀結構之光學性質分析 ....................................... 122 4.5 固定脈衝頻率及工作比例,改變總鍍膜時間(Ttotal)影響 ............ 129 4.5.1固定脈衝頻率及工作比例,改變總鍍膜時間(Ttotal)對TiN島狀結構影響 .............................................................................................................. 129 4.5.2固定脈衝頻率及工作比例,改變總鍍膜時間(Ttotal)對TiN島狀結構之光學性質分析 ...................................................................................... 134 4.5.3 最佳參數拉曼散射光譜訊號均勻度研究 ........................................... 139 第五章 結論與未來展望 .................................................................................................. 142 5.1 結論 ......................................................................................................................... 142 5.2 未來展望 ............................................................................................................... 144 參考文獻 ................................................................................................................................. 145 附錄 ........................................................................................................................................... 156 JCPDS cards-TiN (fcc) ................................................................................................ 156

〔1〕S. S. Chang and C. R. C. Wang, “The synthesis and absorption spectra of several metal nanoparticle systems”, Chemical 56, 209-222, 1998.
〔2〕R. M. Stockle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy”, Chemical Physics Letters 318, 131-136, 2000.
〔3〕 E. Dvjardin, L. B. Hsin, C. R. C. Wang, S. Mann, “DNA-driven self- assembly of gold nanorods”, Chemistry Communications 14, 1264-1265, 2001.
〔4〕 J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, The Journal Chemical Physics 116, 6755-6759, 2002.
〔5〕L. M. Liz-Marzan, “Nanometals: formation and color”, Materials Today 26, 26-31, 2004.
〔6〕H. Xu, E. J. Bjerneld, M. Kall, “Spectroscopy of single hemoglobin molecule by 
surface-enhanced Raman scattering”, Physical Review Letters 22, 4357-4360, 1999.
〔7〕T. Qiu, X.L. Wu, J.C. Shen, Y. Xia, P.N. Shen, Paul K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates”, Applied Surface Science 254, 5399–5402, 2008.
〔8〕Raman, C.V. and K.S. Krishnan, “A new type of secondary radiation”, Nature 121, 501-502, 1928.
〔9〕Raman, C.V., “A new radiation”, Indian Journal of Physics 2, 387-398, 1928.
〔10〕R. Aroca, Surface enhanced vibrational spectroscopy, Wiley, 2006.
〔11〕R. Petry, M. Schmitt, J. R. Popp, “Raman spectroscopy - a prospective tool in the life sciences”, ChemPhysChem 4 , 14-30, 2003.
〔12〕K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy”, Journal of Physics: Condensed Matter 14, R597-R624, 2002.
〔13〕R. L. Mccreery, Raman spectroscopy for chemical analysis, John Wiley & Sons, inc., 2000.
〔14〕D. A. Skoog, F. J. Holler, T. A. Nieman, Principle of instrumental analysis, Saunders College Publishing, 1998.
〔15〕柯賢文, 表面與薄膜處理技術, 全華科技圖書股份有限公司, 民國94年。
〔16〕羅吉宗, 薄膜科技與應用, 全華圖書股份有限公司, 民國98年。
〔17〕P. M. Martin, William Andrew, Handbook of deposition technologies for films and coatings : science, applications and technology , Elsevier Science, 2009.
〔18〕A. Virkar, Investigating the nucleation, growth, and energy levels of organic semiconductors for high performance plastic electronics, Springer Science+Business Media, LLC, 2012.
〔19〕M. A. F. Epstein, Nucleation, growth, and impurity effects in crystallization process engineering, American Institute of Chemical Engineers, 1982.

〔20〕K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology sputtering of compound materials, Springer, 2004.
〔21〕M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields”, IEEE Journal of Selected Topics in Quantum Electrons 8 , 839-862 2002.
〔22〕P. N. Prasad, Nanophotonics , Wiley, 2004.
〔23〕A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles”, Physics Reports 408, 131, 2005.
〔24〕S. Kawata ed, Near-field optics and surface plasmon polaritons, Springer, Berlin, 2001.
〔25〕S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—A route to nanoscale optical devices”, Advanced Materials 13, 1501-1505, 2001.
〔26〕吳民耀,劉威志, “表面電漿子理論與模擬”, 物理雙月刊,第二十八卷二期, 486-496, 2006。
〔27〕W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 824-830, 2003.
〔28〕A. Bouvree, A. D’Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y. Mevellec, B. Humbert, “Nanostructured and nanopatterned gold surfaces: application to the surface-enhanced Raman spectroscopy”, Gold bulletin 46, 283-290, 2013.
〔29〕林萱,利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析,國立中央大學光電科學與工程學系研究所碩士論文, 2012。
〔30〕 S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer and R. P. Van Duyne, “Creating, characterizeing, and controlling chemistry with SERS hot spots”, PhysChemPhys 15, 21-36, 2013.
〔31〕N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, R. P. Van Duyne, “Immobilized nanorod assemblies: Fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates”, Analytical chemistry 85, 2297-2303, 2013.
〔32〕A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering”,
Chemical Society Reviews 27, 1998.
〔33〕A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, “Surface enhanced Raman scattering”, Journal of Physics: Condensed Matter 4, 1143, 1992.
〔34〕張仕欣,王崇人, “金屬奈米粒子的吸收光譜”, 化學,第 56 卷第 3 期, 209-222, 1998。
〔35〕C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, Wiley-VCH Verlag GmbH & Co. KGaA, 1983.
〔36〕G. Mie, “ Contribution to the optics of turbid media, particularly colloidal metal solutions ”, Annals of Physics 25, 377-445, 1908.
〔37〕Barnes, W.L., A. Dereux, T.W. Ebbesen, “Surface plasmon subwavelength optics”, 
Nature 424, 824-830, 2003.
〔38〕Zayats, A.V. and Smolyaninov, “ Near-field photonics: surface plasmon polaritons and 
localized surface plasmons”, Journal of Optics a-Pure and Applied Optics 5, S16-S50, 2003.
〔39〕伍秀菁, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心, 民國 93 年。
〔40〕A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, “Surface-enhanced Raman Scattering”, Journal of Physics: Condensed Matter 4, 1143–1212, 1992.

〔41〕A. Otto, “What is observed in single molecule SERS, and why?” , Journal of Raman spectroscopy 33, 593–598, 2002.
〔42〕H. Ko, S. Singamaneni, V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media”, Wiley-VCH Verlag GmbH & Co. KGaA 4, 1576-99, 2008.
〔43〕S. A. Maier, M. L. Brongersma, P. G. Kik, H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy ”, Physical Review B 65, 193408, 2002.
〔44〕R. de Waele, A. F. Koenderink, A. Polman, “ Tunable nanoscale localization of energy on plasmon particle arrays”, Nano Letters 7, 2004–2008, 2007.
〔45〕Y. Yang, J. Shi, T. Tanaka, M. Nogami, “ Self-Assembled Silver Nanochains for surface-enhanced Raman scattering”, Langmuir 23, 12042-12047, 2007.
〔46〕L. Lu, A. Eychmuller, A. Kobayashi, Y. Hirano, K. Yoshida, Y. Kikkawa, K. Tawa, Y. Ozaki, “Designed fabrication of ordered porous Au/Ag nanostructured films for surface-enhanced Raman scattering substrates”, Langmuir 22, 2605-2609, 2006.
〔47〕G. Duan, W. Cai, Y. Luo, Y. Li, Y. Lei,“ Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering”, Applied Physics Letters 89, 181918, 2006.
〔48〕T. Ignat, M.-A. Husanu, R. Munoz, M. Kusko, M. Danila, C. M. Teodorescu, “Gold nano-island arrays on silicon as SERS active substrate for organic molecule detection”, Thin Solid Films 550, 354–360, 2014.
〔49〕Z. Zheng, S. Tang, S. Vongehr, X. Meng, “Square-wave electrochemical growth of lying three-dimensional silver dendrites with high surface-enhanced Raman scattering activities”, Materials Chemistry and Physics 129, 594–598, 2011
〔50〕H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, Y.-L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps”, Advanced Materials 18, 491–495, 2006.
〔51〕Xu, H. X. Bjerneld, E. J. Kall, M. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”, Physics Review Letter 83, 4357, 1999.
〔52〕S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, R. P. V. Duyne,“Creating, characterizing, and controlling chemistry with SERS hot spots”, Physical Chemistry Chemical Physics 15 ,1–380, 2013.
〔53〕J.-C. Bian, Z. Li, Z.-D. Chen, H.-Y. He, X.-W. Zhang, X. Li, G.-R. Han, “Electrodeposition of silver nanoparticle arrays on ITO coated glass and their application as reproducible surface-enhanced Raman scattering substrate”, Applied Surface Science 258, 1831-1835, 2011.
〔54〕L. Shu, J. Zhou , X. Yuan, L. Petti, J. Chen, Z. Jia, P. Mormile, “Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate”, Talanta 123, 161–168, 2014.
〔55〕Chengmin Shen, Chao Hui, Tianzhong Yang, Congwen Xiao, Jifa Tian, Lihong Bao, Shutang Chen, Hao Ding, Hongjun Gao, “Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties”, Chemistry of Materials 20, 6939–6944, 2008.
〔56〕W.-Y. Chang, K.-H. Lin, J.-T. Wu, S.-Y. Yang, K.-L. Lee, P.-K. Wei, “Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering”, Journal of Micromechanics and Microengineering 21, 035023, 2011.
〔57〕W. Zhoua, J. Wangb, J. Zhanga, X. Lia, G. Mina, “Large-area fabrication of 3D petal-like nanopattern for surface enhanced Raman scattering”, Applied Surface Science 303, 84–89, 2014.
〔58〕W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 824–830, 2003.
〔59〕S. Lal, S. Link and N. Halas, “Nano-optics from sensing to waveguiding”, Nature Photonics 1, 641–648, 2007.
〔60〕D. Smith, J. Pendry, M. Wiltshire, “Metamaterials and negative refractive index”, Science 305, 788–792, 2004.
〔61〕W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications, Springer Verlag, 2009.
〔62〕G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths ”, Optical Society of America 2, 478-489, 2012.
〔63〕G. V. Naik, J. Kim, A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range”, Optical Society of America 1, 1090-1099, 2011
〔64〕 G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials”, Physica Status Solidi (RRL) 4, 295–297, 2010.
〔65〕M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths”, Applied Physics Letters 99, 021101, 2011.
〔66〕T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin 25, 38–44 ,2000.
〔67〕G. Naik, J. Kim, A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range”, Optical Materials Express 1, 1090–1099, 2011.
〔68〕D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, H. Yoon ,“Robust ternary metal gate electrodes for dual gate CMOS devices”, International Electron Devices Meeting 01, 30.6.1-30.6.4, 2001.
〔69〕A. P. Ehiasarian, A. Vetushka, Y. Aranda Gonzalvo, G. Safran, L. Szekely, P. B. Barna “ Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films”, Journal of Applied Physics 109, 104314, 2011.
〔70〕L. E. Toth, Transition metal carbides and nitrides, Academic Press, 279, 1971.
〔71〕J. L. Murray, Phase diagram of binary titanium alloys,
 ASM International Ohio, 176 , 1987.
〔72〕T. Mori, S. Fukuda, Y. Takemura, “Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering”, Surface and Coatings Technology 140, 122-127, 2001.
〔73〕G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths”, Optical Materials Express 2, 478-489, 2012.
〔74〕P. Patsalas, S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films”, Journal of Applied Physisc 90, 4725, 2001.
〔75〕J. B. Khurgin, G. Sun, “In search of the elusive lossless metal”, Applied Physics Letters 96, 181102, 2010.
〔76〕H. T. Nguyen-Truong, “Energy-loss function including damping and prediction of plasmon lifetime”, Journal of Electron Spectroscopy and Related Phenomena 193, 79–85, 2014.
〔77〕W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3”, Japanese Journal of Applied Physics 42, 208–212, 2003.
〔78〕V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic 
metamaterials”, Optics Express 16, 1186–1195, 2008.
〔79〕G. G. Fuentes, E. Elizalde, J. M. Sanza, “Optical and electronic properties of TiCxNy films”, Journal of Applied Physics 90, 2737, 2001.
〔80〕Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. 
Areva, J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering”, Materials Science and Engineering: A 223, 445-446, 2007
〔81〕M. B. Cortie, J. Giddings, A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures”, Nanotechnology 21, 115201, 2010.
〔82〕I. Lorite, A. Serrano, A. Schwartzberg, J. Bueno, J.L. Costa-Kramer, “Surface enhanced Raman spectroscopy by titanium nitride non-continuous thin films”, Thin Solid Films 531, 144–146, 2013.
〔83〕H.A. Atwater and A. Polman, “A small world full of opportunities”, Nature Materials 9, 205, 2010.
〔84〕B. Sepulvedaa, P.C. Angelomeb, L.M. Lechugaa, L.M. Liz-Marzanb, “LSPR-based nanobiosensors”, Nano Today 4, 244, 2009.
〔85〕S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275, 1102, 1997.
〔86〕李正中, 薄膜光學與鍍膜技術, 藝軒圖書, 民國 98 年。
〔87〕 許立政, 氧化鋅奈米線陣列應用於表面增幅拉曼光譜分析, 國立台灣科技大學化工系, 民國 101 年。
〔88〕N. Arshi, J. Lu, B. H. Koo, C. G. Lee, F. Ahmed, “Effect of nitrogen flow rate on the properties of TiN film deposited by e beam evaporation technique”, Applied Surface Science 258, 8498–8505, 2012.
〔89〕A. Vesel , M. Mozetic, J. Kovac, A. Zalar, “XPS study of the deposited Ti layer in a magnetron-type sputter ion pump”, Applied Surface Science 253, 2941–2946, 2006.
〔90〕N. D. Cuong, D.-J. Kim, B.-D. Kang, S.-G. Yoon, “Effects of nitrogen concentration on structural and electrical properties of titanium nitride for thin-film resistor applications”, Electrochemical and Solid-State Letters 9, G279-G281, 2006.
〔91〕鄭嘉升, 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究, 天主教輔仁大學化學系, 民國九十五年。

QR CODE