簡易檢索 / 詳目顯示

研究生: 王靖元
Jing-Yuan Wang
論文名稱: 考量三維姿態補償之橫向凸桿抓枝機器人運動步態設計與分析
Locomotion Design and Analysis of Transverse Ledge Brachiation Robot with Three-Dimensional Posture Compensation
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃安橋
林志哲
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 131
中文關鍵詞: 橫向抓枝機器人連續橫向抓枝橫向飛躍抓枝運動步態設計姿態偏轉反作用輪
外文關鍵詞: Transverse brachiation robots, continuous brachiation, ricochetal brachiation, locomotion design, posture deviation, reaction wheels
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

橫向抓枝機器人擅長攀附在外牆凸緣上,利用下肢擺盪蓄能及特殊設計的步態,在凸起物上實現橫向移動。過去已有多種不同類型的橫向抓枝機器人被提出,然而它們面臨一致的挑戰─無法自主修正姿態偏轉,這導致飛躍抓枝運動著陸失敗或墜落,以及無法實現連續兩個以上的橫向抓枝循環。為解決此問題,本研究透過簡化橫向抓枝機器人模型並分析其動態方程式,深刻了解到橫向抓枝機器人必定得與偏轉現象共存,因此,本文提出具反作用輪姿態補償系統的橫向抓枝機器人構型,同時為此機器人設計連續橫向抓枝步態及橫向飛躍步態。連續橫向抓枝步態著重於循環與循環間的能量延續,透過能量在循環間延續,使運動更順暢及有效率。本研究藉由將此步態分為上、下肢步態,上肢於適當的時機依序探出右手及左手使機器人持續地移動,下肢則負責擺盪提供連續移動的能量,並適時稍作停頓協調整體運動節奏。藉由上、下肢各司其職的工作,達成此細膩的連續抓枝步態。而橫向飛躍抓枝步態則使用最佳化方法找到最佳的關節軌跡,使機器人能飛躍最遠的距離。當然以上運動步態皆設計相對應的姿態補償策略,使得連續橫向抓枝步態雙爪能持續依附在桿件上,且橫向飛躍步態能夠安全著陸。最終透過模擬結果顯示,本研究提出的反作用輪姿態補償系統在橫向連續抓枝步態和橫向飛躍步態皆呈現明顯的姿態修正效果,此外在橫向連續抓枝運動中,能量能夠有效延續在循環之間。以上步態設計方法及姿態補正系統為未來橫向抓枝機器人研究提供了優良的參考基礎。


Transverse brachiation robots (TBR) belong to the category of bio-inspired robots which utilize the swinging motion of their lower limbs to realize transverse movement by alternatively grasping and releasing the ledges on the vertical walls. Various types of transverse brachiation robots have been proposed to investigate the potential benefits of this unique locomotion; however, due to the ledge grasping constraints they all face a unsolved challenge in which conventional monkey-inspired brachiation robots do not have. According to the previous findings, there exist inevitably posture deviations during each brachiation cycle, easily leading to failed brachiation landings and impeding energy accumulation to achieve continuous transverse brachiation for more than two cycles. This study first simplifies the dynamic model of multi-link transverse brachiation robots and applies the linearized dynamics to justify the problem of gripping deviation caused by swing motion. This study then proposes a TBR configuration embedded with reactive wheels as active posture compensation system to design new locomotion styles for continuous transverse brachiation and ricochetal brachiation. To realize smooth and efficient energy transfer between brachiation cycles, this study specifically classifies the robot gait into upper and lower limb movements for better coordination. The upper limbs are designed to alternatively extend both hands at appropriate timings to grasp the ledges with forward movement, while the lower limbs are equipped with both continuous oscillation and intermittent pauses to coordinate the overall movement rhythm. The joint motion trajectories required for transverse ricochetal brachiation are obtained through an optimization procedure to facilitate the leaping behavior and hand-eye coordination. Active posture compensation strategies are designed to ensure steady gripping during the whole locomotion and safe landing at the end of each brachiation cycle. Simulation results demonstrate the effectiveness of the designed upper-lower limb coordination strategies and proposed reactive wheel attitude compensation system. After including the issue of gripping deviation into locomotion control design, sufficient energies can now be efficiently reserved from the previous locomotion cycles to ensure desired smooth movements in the succeeding cycles. The locomotion design and posture compensation methods presented in this thesis provide a solid reference for future research on transverse brachiation robots.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XV 第一章 緒論 1 第二章 問題建構 14 2.1 橫向抓枝機器人偏轉現象 14 2.2具反作用輪姿態補正系統抓枝機器人構型 19 2.2.1反作用輪姿態補正系統 20 2.2.2 夾爪設計 21 2.3橫向抓枝運動分析 22 2.3.1連續橫向抓枝運動步態 23 2.3.2橫向飛躍抓枝運動步態 26 2.4模擬假設及定義 30 2.4.1假設前提 30 第三章 系統動態模型推導 32 3.1動態模型推導流程 32 3.1.1 Forward Kinematics 32 3.1.2 Jacobian Matrix 34 3.1.3 Dynamic Equation 35 3.2抓枝機器人動態模型 36 3.2.1雙手固定模型 (Holding the ledge with both hands) 38 3.2.2右手釋放模型 (Releasing the right hand) 44 3.2.3左手釋放模型 (Releasing the left hand) 47 3.2.4雙手釋放模型 (Releasing both hands) 50 第四章 橫向抓枝機器人碰撞模型 54 4.1夾爪碰撞點 54 4.2碰撞力及動態影響 57 第五章 連續橫向抓枝運動控制策略 60 5.1上肢運動策略 61 5.1.1雙手併攏狀態 (Hands Together State) 62 5.1.2抓握階段 (Approaching Phase) 66 5.1.3雙臂張開狀態 (Open Arms State) 68 5.1.4復歸階段 (Catching Up Phase) 69 5.2下肢運動策略 72 5.2.1擺盪階段 (Swing Phase) 73 5.2.2固定階段 (Hanging Phase) 75 5.3姿態補正策略 80 第六章 橫向飛躍運動控制策略 82 6.1運動步態設計 82 6.1.1擺盪階段 (Swing Phase) 84 6.1.2抓握階段 (Approaching Phase) 85 6.1.3飛躍階段 (Flying Phase) 89 6.1.4著陸階段 (Landing Phase) 92 6.1.5停止階段 94 6.2姿態補正策略 95 第七章 模擬結果 96 7.1連續橫向抓枝運動步態 96 7.1.1無補正策略模擬結果 96 7.1.2加入補正策略模擬結果 103 7.2飛躍抓枝運動步態 111 7.2.1無補正策略模擬結果 111 7.2.2加入補正策略模擬結果 113 第八章 結論及未來目標 118 8.1結論 118 8.2未來目標 119 參考文獻 120 附錄 125

[1] T. Fukuda, H. Hosokai, and Y. Kondo, “Brachiation type of mobile robot,” in Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Jun. 1991, pp. 915–920 vol.2. doi: 10.1109/ICAR.1991.240556.
[2] F. Saito, T. Fukuda, and F. Arai, “Swing and locomotion control for a two-link brachiation robot,” IEEE Control Systems Magazine, vol. 14, no. 1, pp. 5–12, Feb. 1994, doi: 10.1109/37.257888.
[3] Y. Liu and H. Yu, “A survey of underactuated mechanical systems,” IET Control Theory & Applications, vol. 7, no. 7, pp. 921–935, 2013, doi: 10.1049/iet-cta.2012.0505.
[4] M. W. Spong, “Partial feedback linearization of underactuated mechanical systems,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), Sep. 1994, pp. 314–321 vol.1. doi: 10.1109/IROS.1994.407375.
[5] H. Kajima, Y. Hasegawa, M. Doi, and T. Fukuda, “Energy-based swing-back control for continuous brachiation of a multilocomotion robot,” International Journal of Intelligent Systems, vol. 21, no. 9, pp. 1025–1043, 2006, doi: 10.1002/int.20174.
[6] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “A hybrid swing up controller for a two-link brachiating robot,” in 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399), Sep. 1999, pp. 549–554. doi: 10.1109/AIM.1999.803229.
[7] S. Farzan, V. Azimi, A.-P. Hu, and J. Rogers, “Cable Estimation-Based Control for Wire-Borne Underactuated Brachiating Robots: A Combined Direct-Indirect Adaptive Robust Approach,” in 2020 59th IEEE Conference on Decision and Control (CDC), Feb. 2020, pp. 5532–5539. doi: 10.1109/CDC42340.2020.9304428.
[8] Z. Cheng, H. Cheng, and H. Xu, “Deep Reinforcement Learning Based Brachiation Control for Two-Link Bio-Primate Robot,” in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Feb. 2018, pp. 856–861. doi: 10.1109/ROBIO.2018.8665274.
[9] A. Meghdari, S. M. H. Lavasani, M. Norouzi, and M. S. R. Mousavi, “Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot,” Robotica, vol. 31, no. 7, pp. 1119–1129, Oct. 2013, doi: 10.1017/S0263574713000362.
[10] H. Cheng, C. Rui, and L. Hao, “Motion Planning for Ricochetal Brachiation Locomotion of Bio-primitive Robot,” in 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jul. 2017, pp. 259–264. doi: 10.1109/CYBER.2017.8446417.
[11] D. Wan, H. Cheng, G. Ji, and S. Wang, “Non-horizontal ricochetal brachiation motion planning and control for two-link Bio-primate robot,” in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Feb. 2015, pp. 19–24. doi: 10.1109/ROBIO.2015.7407033.
[12] E. Davies, A. Garlow, S. Farzan, J. Rogers, and A.-P. Hu, “Tarzan: Design, Prototyping, and Testing of a Wire-Borne Brachiating Robot,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 7609–7614. doi: 10.1109/IROS.2018.8593823.
[13] A. K.-Y. Lo, Y.-H. Yang, T.-C. Lin, C.-W. Chu, and P.-C. Lin, “Model-Based Design and Evaluation of a Brachiating Monkey Robot with an Active Waist,” Applied Sciences, vol. 7, no. 9, Art. no. 9, Sep. 2017, doi: 10.3390/app7090947.
[14] S. Farzan, V. Azimi, A.-P. Hu, and J. Rogers, “Adaptive Control of Wire-Borne Underactuated Brachiating Robots Using Control Lyapunov and Barrier Functions,” IEEE Transactions on Control Systems Technology, vol. 30, no. 6, pp. 2598–2614, Jan. 2022, doi: 10.1109/TCST.2022.3160058.
[15] N. Morozovsky and T. Bewley, “SkySweeper: A low DOF, dynamic high wire robot,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Jan. 2013, pp. 2339–2344. doi: 10.1109/IROS.2013.6696684.
[16] 好房網News, “裝分離式竟讓小偷鑽「冷氣窗」得逞!專家曝水泥封死更慘:1招秒化解,” 好房網News, Aug. 27, 2021. https://news.housefun.com.tw/news/article/173537308391.html (accessed Jul. 16, 2023).
[17] “外牆清洗小常識-台南清潔公司.” https://www.cleanhouse.com.tw/news-13.html (accessed Jul. 16, 2023).
[18] 黃婕瑜, “連續橫向抓枝機器人抓握碰撞動態與運動能量分析,” 機械工程系碩士論文, 國立臺灣科技大學, 2021.
[19] C.-Y. Lin and J.-M. Lee, “Multi-Locomotion Design and Implementation of Transverse Ledge Brachiation Robot Inspired by Sport Climbing,” Biomimetics, vol. 8, no. 2, Art. no. 2, Jun. 2023, doi: 10.3390/biomimetics8020204.
[20] C.-Y. Lin and Z.-H. Yang, “TRBR: Flight body posture compensation for transverse ricochetal brachiation robot,” Mechatronics, vol. 65, p. 102307, Feb. 2020, doi: 10.1016/j.mechatronics.2019.102307.
[21] C.-Y. Lin, S.-J. Shiu, Z.-H. Yang, and R.-S. Chen, “Design and swing strategy of a bio-inspired robot capable of transverse ricochetal brachiation,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Aug. 2017, pp. 943–948. doi: 10.1109/ICMA.2017.8015943.
[22] C.-Y. Lin and Y.-J. Tian, “Design of Transverse Brachiation Robot and Motion Control System for Locomotion between Ledges at Different Elevations,” Sensors, vol. 22, no. 11, Art. no. 11, Jan. 2022, doi: 10.3390/s22114031.
[23] 楊宗翰, “橫向飛躍抓枝機器人之設計改良與運動控制研究,” 機械工程系碩士論文, 國立臺灣科技大學.
[24] 田詠傑, “橫向抓枝機器人之設計與實作,” 機械工程系碩士論文, 國立臺灣科技大學.
[25] 李哲銘, “參考運動員攀登行為之橫向凸桿抓枝機器人運動步態設計與實現,” 機械工程系碩士論文, 國立臺灣科技大學, 2022.
[26] A. M. Oluwatosin, Y. Hamam, and K. Djouani, “Attitude control of a CubeSat in a circular orbit using magnetic actuators,” in 2013 Africon, Sep. 2013, pp. 1–9. doi: 10.1109/AFRCON.2013.6757619.
[27] N. Jovanovic, B. Riwanto, P. Niemelä, M. R. Mughal, and J. Praks, “Design of Magnetorquer-Based Attitude Control Subsystem for FORESAIL-1 Satellite,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 2, no. 4, pp. 220–235, Feb. 2021, doi: 10.1109/JMASS.2021.3093695.
[28] R. Votel and D. Sinclair, “Comparison of Control Moment Gyros and Reaction Wheels for Small Earth-Observing Satellites,” Small Satellite Conference, Aug. 2012, [Online]. Available: https://digitalcommons.usu.edu/smallsat/2012/all2012/74
[29] A. Gaude and V. Lappas, “Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats,” Aerospace, vol. 7, no. 5, Art. no. 5, May 2020, doi: 10.3390/aerospace7050055.
[30] “MT01 Compact Magnetorquer | satsearch.” https://satsearch.co/products/exa-mt01-compact-magnetorquer (accessed Jul. 17, 2023).
[31] “Reaction wheels ensure satellites maintain the right attitude: Part 1.” https://www.microcontrollertips.com/reaction-wheels-ensure-satellites-maintain-the-right-attitude-part-1-faq/ (accessed Jul. 17, 2023).
[32] T. Sasaki, T. Shimomura, and H. Schaub, “Robust Attitude Control Using a Double-Gimbal Variable-Speed Control Moment Gyroscope,” Journal of Spacecraft and Rockets, vol. 55, no. 5, pp. 1235–1247, Sep. 2018, doi: 10.2514/1.A34120.
[33] S. G. Tzafestas, Introduction to Mobile Robot Control. Elsevier, 2013.
[34] A. R. Geist, J. Fiene, N. Tashiro, Z. Jia, and S. Trimpe, “The Wheelbot: A Jumping Reaction Wheel Unicycle,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9683–9690, Oct. 2022, doi: 10.1109/LRA.2022.3192654.
[35] Y. Kim, H. Kim, and J. Lee, “Stable control of the bicycle robot on a curved path by using a reaction wheel,” J Mech Sci Technol, vol. 29, no. 5, pp. 2219–2226, May 2015, doi: 10.1007/s12206-015-0442-1.
[36] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic vertical jumping agility via series-elastic power modulation,” Science Robotics, vol. 1, no. 1, p. eaag2048, Dec. 2016, doi: 10.1126/scirobotics.aag2048.
[37] M. Helmy, A. T. Hafez, and M. Ashry, “CubeSat Reaction Wheels Attitude Control Via Modified PI-D Controller,” in 2022 International Telecommunications Conference (ITC-Egypt), Jul. 2022, pp. 1–6. doi: 10.1109/ITC-Egypt55520.2022.9855679.
[38] “Hand-Grip Strength Linked to Diabetes, Hypertension - WSJ.” https://www.wsj.com/articles/hand-grip-strength-linked-to-diabetes-hypertension-1454346479 (accessed Jul. 16, 2023).
[39] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” Journal of Applied Mechanics, vol. 22, no. 2, pp. 215–221, Jun. 2021, doi: 10.1115/1.4011045.
[40] J. J. Craig, Introduction to Robotics. Pearson Educación, 2006.
[41] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. John Wiley & Sons, 2020.
[42] P. M. Kebria, S. Al-wais, H. Abdi, and S. Nahavandi, “Kinematic and dynamic modelling of UR5 manipulator,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2016, pp. 004229–004234. doi: 10.1109/SMC.2016.7844896.
[43] Y. S. Hagh, A. Fekih, and H. Handroos, “Robust finite non-singular terminal synergetic control for second order nonlinear systems subject to time-varying mismatched disturbances,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Aug. 2021, pp. 228–233. doi: 10.1109/ICIEA51954.2021.9516332.
[44] “(PDF) Lagrangian Dynamic Formulation of a Four-Bar Mechanism · PDF fileLagrangian Dynamic Formulation of a Four-Bar Mechanism with Minimal Coordinates Chin Pei Tang March 2006 (Last Corrected:,” dokumen.tips. https://dokumen.tips/documents/lagrangian-dynamic-formulation-of-a-four-bar-mechanism-dynamic-formulation-of.html (accessed Jul. 06, 2023).
[45] K. Liu, J. Zhao, M. Wang, Z. Wang, and W. Liang, “Gait Planning and Simulation Analysis of Quadruped Robot,” in 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC), Oct. 2021, pp. 274–278. doi: 10.1109/ITNEC52019.2021.9587187.
[46] M. Kelly, “An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation,” SIAM Rev., vol. 59, no. 4, pp. 849–904, Jan. 2017, doi: 10.1137/16M1062569.
[47] E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “Energy efficiency of underwater snake robot locomotion,” in 2015 23rd Mediterranean Conference on Control and Automation (MED), Jun. 2015, pp. 1124–1131. doi: 10.1109/MED.2015.7158907.

無法下載圖示 全文公開日期 2025/08/25 (校內網路)
全文公開日期 2028/08/25 (校外網路)
全文公開日期 2028/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE