簡易檢索 / 詳目顯示

研究生: 李德浩
Te-Hao Lee
論文名稱: 低溫鋁擴散進入非晶矽形成P型層的技術及其在矽晶異質接合太陽能電池應用的研究
Formation of p-type μc-Si layers Through Low-Temperature Diffusion of Al/a-Si:H and its Application in Si Heterojunction Solar Cells
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 葉秉慧
Pinghui Sophia Yeh
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 電漿輔助化學氣相沉積低溫鋁擴散鈍化異質接合太陽能電池異質接合背向指叉式電極太陽能電池
外文關鍵詞: plasma enhanced CVD, low-temperature thermal diffusion
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究第一部分實驗係利用一低溫鋁擴散於非晶矽膜層使其形成p型多晶矽層之技術,作為矽晶異質接合太陽電池背電場製作的應用。以此技術製備p型膜層的實驗結果顯示,非晶矽層與濺鍍鋁層接觸並經200℃熱處理1小時後,可獲得薄膜導電率為185 (S/cm)的結晶化p型膜層。以此低溫鋁擴散形成的p型層作為p型單晶矽晶異質接合太陽電池元件的背電場,獲得元件的光電轉換效率可達12.0 %。由穿透式電子顯微鏡觀察到此一製程會造成鋁擴散到矽基材的界面上而發生部分磊晶,導致元件開路電壓僅有590 mV。有鑒於此,我們使用局部鋁擴散以及加入擴散阻絕層的方式來提升元件的開路電壓,結果顯示使用氧化銦錫膜層作為阻絕層時,晶片暗示開路電壓可達700 mV。
第二部分的實驗中,我們利用低溫鋁擴散製程的技術於背向指叉式電極太陽電池的製作,期待能減少製程時所需的光微影技術與圖形定義的對準步驟,嘗試僅以一道圖形定義即可完成背面指叉型p-n接合的膜層。實驗結果顯示,藉由晶片背面全面先形成n型非晶矽層後,再以局部區域的低溫鋁擴散技術可成功製作出指叉型p+-n+區域,製作出的背向電極太陽電池元件的電流密度、開路電壓、填充因子分別為18.03 mA/cm2、523 mV、45.1 %,元件效率為4.26 %


We have explored a process to form highly Al-doped crystalline Si layers through low-temperature diffusion of Al into hydrogenated amorphous Si (a-Si:H) layers prepared by PECVD. A typical film conductivity of ~185 (S/cm) was obtained after thermal-treating Al/a-Si:H for 1 hr at 200oC. Applying the p+ layer thus prepared as the back surface field for p-type mono-crystalline Si hetero-junction solar cell, we achieved a primary cell efficiency of 12.0 % on an untextured Si wafer with an open circuit voltage (Voc) of 590 mV. In particular, unintentional epitaxial growth was found to occur during an intended Al-doped crystalline process, thereby deteriorating the interfacial passivation because of the poor structural quality of nanocrystalline Si. Then, we investigated the possibility to insert a diffusion barrier layer to prevent the interdiffusion of Al into amorphous Si matrix, by which the implied Voc was improved from 590 mV to 695 mV. Moreover, Interdigitated back contact silicon solar cell was fabricated by applying the present technique, which showed a preliminary cell efficiency of 4.26%.

摘要 I Abstract II 誌謝 III 目錄 V 圖索引 VIII 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 矽晶太陽能電池 6 1.3 異質接合太陽能電池發電原理 11 1.4 非晶矽薄膜的性質與成長機制 17 1.5 低溫鋁擴散原理 20 1.6研究目的與方向 24 第二章 實驗相關部分 25 2.1 實驗裝置 25 2.1-1 使用rf-PECVD系統成長本質層、p型及n型非晶矽 薄膜 25 2.1-2 使用磁控濺鍍系統成長透明導電玻璃薄膜 30 2.1-3使用磁控直流濺鍍系統成長鋁層薄膜 32 2.1-4 使用高溫爐系統進行熱擴散製程 34 2.2 實驗程序 35 2.2-1 矽晶基材之清洗 35 2.2-2 玻璃基材的清洗 37 2.2-3 異質接合太陽能電池之製作程序 38 2.2-4 低溫鋁擴散太陽能電池之製作程序 39 2.2-5 異質指叉式背向電極太陽能電池之製作程序 40 2.2-6低溫鋁擴散薄膜之製作程序 41 2.3 分析儀器 42 2.3-1表面形態輪廓儀 (surface profiler) 42 2.3-2 拉曼光譜儀(Raman) 43 2.3-3 紫外光/可見光光譜儀 (UV/VIS) 45 2.3-4 場發射掃瞄式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 48 2.3-5 X射線光電子能譜化學分析儀 (X-ray photoelectron spectroscopy) 49 2.3-6 霍爾量測儀 (Hall measurement) 50 2.3-7 電壓電流量測系統 (IV) 53 2.3-8 載子生命週期量測儀 (Lifetime tester) 54 2.3-9 太陽光模擬器 (solar simulator) 58 2.3-10 橢圓偏光儀 (Ellipsometer) 61 2.3-11 穿透式電子顯微鏡 (transmission electron microscope, TEM) 62 第三章 結果與討論 64 3.1低溫鋁擴散形成高摻雜p型矽膜層應用在矽晶異質接合太陽 能電池製作之研究 64 3.1-1低溫鋁擴散形成高摻雜p型矽膜層的特性及應用在矽 晶太陽電池元件的元素縱深分析 65 3.1-2濺鍍鋁膜層時的電漿功率對矽晶異質接合太陽能電池 元件的特性影響 71 3.2加入擴散阻絕層時的p型矽晶異質接合太陽能電池特性 75 3.2-1加入擴散阻絕層對晶片鈍化效果的比較 76 3.2-2 擴散阻絕層厚度對矽晶異質接合太陽能電池的特性 影響 81 3.3低溫鋁擴散應用於製作指叉式背向電極太陽電池元件之研究 89 3.3-1 n型膜層經低溫鋁擴散形成高摻雜p型膜層的特性 90 3.3-2正面場效應對指叉式背向電極太陽電池的特性影響 94 第四章 結論 102 參考文獻 103 作者簡介 109

1. Source U.S. Energy information administration EIA.
2. KRI Report No. 8: Solar Cells, February 2005
3. The National Center for Photovaoltaics (NCPV) at NREL, DOE,April 2012
4. D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., Vol.25, pp.676-677 (1954).
5. European Photovolatic Industry Associsation EPIA
6. crystalline Si technology and manufacturing group, CTM ---緒論 fine.
7. Kerr, M.J., Campbell, P., Cuevas, A.: Lifetime and efficiency limits of crystalline silicon solar cells. In: Conf. Rec. 29th IEEE Photovolt. Spec. Conf., New Orleans,USA, pp. 438–441 (2002)
8. Swanson, R.M.: Approaching the 29 % limit efficiency of silicon solar cells. In: Proc. 31st IEEE Photovolt. Spec. Conf., Lake Buena Vista, USA, pp. 889–894 (2005)
9. del Canizo, C., del Coso, G., Sinke, W.C.: Crystalline Silicon Solar Module Technology: Towards the 1 euro Per Watt-Peak Goal. Prog. Photovolt.: Res. & Appl. 17, 199–209 (2009)
10. Zhao, J., Wang, A., Green, M.A.: 24.5% Efficiency silicon PERT cells on CZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt.: Res. & Appl. 7, 471–474 (1999)
11. Blakers, A.W., Green, M.A.: 20% Efficiency Silicon Solar Cells. Appl. Phys. Lett. 48, 215–217 (1986)
12. Zhao, J., Wang, A., Green, M.A.: 24.5% Efficiency silicon PERT cells on CZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt.: Res. & Appl. 7, 471–474 (1999)
13. Zhao, J., Wang, A.H., Green, M.A.: 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates. Sol. Energy Mat. Sol. Cells 66, 27–36 (2001)
14. J. Zhao, A. Wang, and M. A. Green, Technical Digest of the international PVSEC-11, 557 (1999).
15. De Ceuster, D., Cousins, P., Rose, D., Vicente, D., Tipones, P., Mulligan, W.: Low Cost, high volume production of >22% efficiency silicon solar cells. In: Proc. 22nd Eur. Photovolt. Sol. Energy Conf., Milano, Italy, pp. 816–819 (2007)
16. S. Hermann, et al., in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 970-5 (2007).
17. H. Knauss, H. Haverkamp, W. Jooss, S. Steckemetz, and H. Nussbaumer, Industrially applicable metallisation wrap through solar cell process resulting in efficiencies exceeding 16 %, in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 1192-5 (2006).
18. S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC 3-7 September, 2007 Milano, Italy.
19. http://www.thefullwiki.org/P-n_junction
20. Delfina Munoz, Thibaut Desrues, and Pierre-Jean Ribeyron CEA-INES, Savoie Technolac - 50 avenue du lac Leman - BP258 F-73375 LE BOURGETDU LAC – CEDEX
21. Conrad, E., Korte, L., von. Maydell, L.K., Angermann, H., Schubert, C., Stangl, R.,Schmidt, M.: Development and optimization of a-Si:H/c-Si heterojunction solar cells completely processed at low temperatures. In: Proc. 21st Eur. Photovolt. Sol. Energy Conf., Dresden, Germany, pp. 784–787 (2006)
22. Fesquet, L., Olibet, S., Vallat-Sauvain, E., Shah, A., Ballif, C.: High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiments. In:
23. Kleider, J.P., Chouffot, R., Gudovskikh, A.S., Roca i Cabarrocas, P., Labrune, M., Ribeyron, P.J., Bruggemann, R.: Electronic and structural properties of the amorphous/ crystalline silicon interface. Thin Solid Films 517(23), 6386–6391 (2009)
24. Das, U., Hegedus, S., Zhan, L., Appel, J., Rand, J., Birkmine, R.: Investigation of hetero-interface and junction properties in silicon heterojunction solar cells. In: Conf. Rec. 35th IEEE Photovolt. Spec. Conf., Hawai, USA, pp. 1358–1362 (2010)
25. Schmidt, M., Korte, L., Laades, A., Stangl, R., Schubert, C., Angermann, H., Conrad, E., von Maydell, K.: Physical aspects of a-Si:H/c-Si hetero-junction solar cells. Thin Solid Films 515, 7475–7480 (2007)
26. L.Korte, E. Conrad, et al.“Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. ” Solar Energy Materials and Solar Cells 3(6-7): 905-910.(2009).
27. S.Hanafusa and H.Kuwano, Y., “Developement of New a-si c-si Heterojunction Solar Cell Acj-Hit (Artificially Constructed Junction-Heterojunction with Intrinsic Thin Layer).” Japn J.Appl Phys Part 1-Regular Papers Short Notes & Review Papers, Vol. 31, No. 11, pp. 3518-3522 (1992).
28. M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogentated amorphous silicon and germanium,” Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
29. M. H. Cohen, H. Fritzsche and S. R. Ovshinsky, “Simple band model for amorphous semiconducting Alloys,” Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969).
30. D. E. Carson & C. R. Wronski, “Amorphous silicon Solar Cells,” Pennsylvania State University, USA (2007).
31. Satyen K. Deb, NREL/CP-590-28060(2000).
32. M.J. Keevers, T.L. Young, U. Schubert, and M.A. Green, Proc. Of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy (2007)
33. A.T. Voutsas, Appl. Surf. Sc 208/209(2003) .
34. G. Andra, J. Bergmann, A. Bochmann, F. Falk, A. Grawlik, E. Ose, J. Plentz, S. Dauwe, and T. Kieliba, Conference Record od the 2006 IEEE 4th Word Conference on Photovolatic Energy Conversion. Waikoloa, HI, USA, (2006) .
35. O. Nast and A. J. Hartmann, J. Appl. Phys. 88 (2000).
36. Y. Matsumoto and Z. Yu, Jpn. J. Appl. Phys. 40 (2001) .
37. J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, Appl. Phys. Lett. 87 (2005).
38. T. J. Konno, and R. Sinclair, Philosophical Magazine B 66(1992).
39. T. J. Konno, and R. Sinclair, A. G. Cullis, A. E. Staton-Bevan, and J. L. Hutchison, Proceedings of the Royal Microscopical Society Conference (1993).
40. T. J. Konno, and R. Sinclair, Mater. Sci. Eng A 179/180 (1994).
41. P. Widenborg and A. G. Aberle, J. Cryst. Growth 242 (2002).
42. O. Nast and S.R. Wenham, J. Appl. Phys. 88 (2000).
43. Toyohiko J. Konno and Robert Sinclair, Materials Science and Engineering, A 179/A 180 (1994) 42t~-432
44. Y. Hishikawa, M. Sasaki, S. Tsuge, S. Tsuda, Jpn. J. Appl. Phys. 33, 4373 (1994).
45. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Jpn. J. Appl. Phys. 30, 1008 (1991).
46. Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, Y. Kuwano, J. Appl. Phys. 69, 508 (1991).
47. 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市 (2002).
48. Sinton Consulting, WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual, www.sintonconsulting.com
49. R.A. Sinton, A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
50. A. Cuevas, R.A. Sinton, Prog. Photovolt: Res. Appl. 5, 79 (1997).
51. D. Macdonald, R.A. Sinton, A. Cuevas, J. Appl. Phys. 89, 2772 (2001).
52. J. Nelson, The Physics of Solar Cells, Imperial College Press, London (2003).
53. Maruf Hossain, Husam H. Abu-safe, Hameed Naseem, and William D. Brown, “The Effects of Hydrogen on Aluminum-Induced Crystallization of Sputtered Hydrogenated Amorphous Silico” Journal of Electronic Materials, Vol. 35, No. 1,( 2006).
54. Kashish Sharma, “Towards poly-crystalline silicon thin film solar cells: on the microstructure and the crystallization kinetics of hydrogenated amorphous silicon”
55. Fujiwara H, Kondo M. Impact of epitaxial growth at the heterointerface of a-Si: H/c-Si solar cells. Applied Physics Letters 2007; 90(1): 013503.
56. H. Plagwitz1, M. Nerding, N. Ott, H. P. Strunk and R. Brendel, “Low-Temperature Formationof Local Al Contacts to a-Si:H-passivated Si Wafers” Prog. Photovolt: Res. Appl. (2004)
57. D. Diouf, J.P. Kleider, T. Desrues, and P.J. Ribeyron, Mater. Sci. Eng. B 159/160, 291 (2009).

無法下載圖示 全文公開日期 2018/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE