簡易檢索 / 詳目顯示

研究生: 陳志唯
Chih-Wei Chen
論文名稱: 應用於無人搬運車之無線功率傳輸系統
A Wireless Power Transfer System for Automated Guided Vehicle
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
謝耀慶
Yao-Ching Hsieh
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 主動式功率因數修正器半橋式串聯諧振轉換器串聯-串聯 諧振式無線功率傳輸電路
外文關鍵詞: Active power factor corrector, half-bridge series resonant convertor, wireless power transfer
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製應用於無人搬運車之無線功率傳輸系統,所採用
    之架構由三級電路所組成:第一級電路為升壓型主動式功率因數修正
    器,將失真電流波形修正為正弦波,改善電源的功率因數與消除輸入
    電流諧波;第二級電路為具有同步整流之半橋式串聯諧振轉換器,將
    升壓型功率因數修正器之輸出轉換成適合無線功率傳輸電路之輸入
    電壓,以降低無線傳輸電路損耗。並利用零電壓切換與同步整流技術
    提高轉換效率;第三級電路為串聯-串聯諧振式無線功率傳輸電路,使
    用磁場耦合式進行無線能量傳輸,利用變壓器等效模型與耦合電感等
    效模型進行分析無線功率傳輸電路之線圈參數,並利用同步整流技術
    提高效率。最後設計並實作出一台 1.5 kW 之無線功率傳輸系統,最
    高效率可達 85%。


    This thesis presents the study and implementation of a wireless power
    transfer system with power factor correction. The system is composed of
    three-stage circuits. The first-stage circuit is a Boost power factor corrector,
    which improves the power factor of the power supply and eliminates input
    current harmonics. The second-stage circuit is a half-bridge series resonant
    converter with synchronous rectification, which converts the output of the
    boost power factor corrector into a suitable input voltage for wireless
    power output circuits, and uses zero voltage switching and synchronous
    rectification to improve efficiency. The third-stage circuit is a series-series
    compensated wireless power transfer (WPT) circuit, which uses magnetic
    field coupling for wireless power transmission, the equivalent model of
    transformer and coupling inductance to analyze the coils of the WPT, the
    secondary side uses synchronous rectification to improve efficiency. Finally, a 1.5 kW wireless power transfer system with 85% maximum efficiency was designed and implemented.

    Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 系統簡介 1.3 章節大綱 第二章 主動式功率因數修正器原理 2.1 功率因數與諧波失真的定義 2.2 升壓型功率因數修正器之簡介 2.3 升壓型功率因數修正器之控制模式 第三章 半橋式串聯諧振轉換器原理 3.1 理想R-L-C串聯諧振電路 3.2 零電壓切換與零電流切換 3.3 半橋串聯諧振轉換器 3.3.1 SRC諧振區間 3.3.2 LLC SRC諧振模式 3.3.3 SRC和LLC SRC之比較 3.4 死區時間之推導 3.5 同步整流技術之控制 第四章 串聯-串聯諧振式無線功率傳輸電路原理 4.1 無線功率傳輸線圈之等效模型分析 4.1.1 變壓器等效模型公式推導 4.1.2 耦合電感等效模型公式推導 4.2 基本波近似法 4.3 基於變壓器等效模型之工作區間分析 4.4 基於耦合電感等效模型之工作區間分析 4.5 電感與電容性區間之分叉現象 4.6 提高無線功率傳輸效率之設計考量 4.7 輸入電壓與輸出功率關係 第五章 電路設計與控制 5.1 主動式功率因數修正器設計 5.1.1 電路規格 5.1.2 功率級元件設計 5.1.3 控制IC CU6500介紹 5.1.4 控制IC週邊元件設計 5.2 半橋串聯諧振轉換器電路設計 5.2.1 電路規格 5.2.2 LC諧振槽設計 5.2.3 功率級元件設計 5.2.4 控制IC CU6901V介紹 5.2.5 控制IC週邊元件設計 5.3 串聯-串聯諧振式無線功率傳輸電路設計 5.3.1 電路規格 5.3.2 諧振槽參數設計 5.3.3 功率級元件設計 5.3.4 回授與控制 +第六章 實驗量測波形與數據 6.1 主動式功率因數修正器實測波形與數據 6.2 半橋串聯諧振轉換器實測波形與數據 6.3 串聯-串聯諧振式無線功率傳輸電路實測波形與數據 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] 施媺嬍、廖俊榮、黃世明,「全線無架空線輕軌系統之營運特性」,
    中國工程師學會會刊,91 卷 04 期,第 102-124 頁,2018 年 8 月。
    [2] EUROPEAN POWER SUPPLY MANUFACTURERS ASSOCIATION, “Harmonic Current Emissions,” Guidelines to the standard EN
    61000-3-2, Nov. 2010.
    [3] Daniel W.Hart 著,王順忠譯,「電力電子學」,東華書局,民國 87
    年。
    [4] Bernard Keogh, “Power factor correction using the buck topology-efficiency benefits and practical design considerations,” 2010 Texas Instruments Power Supply Design Seminar, 2010.
    [5] Texas Instruments Incorporated, “UC3854 High Power Factor Preregulator,” Application Note, U-134, Dec. 2016.
    [6] C. A. Canesin and I. Barbi, “Analysis and design of constant-frequency
    peak-current-controlled high-power-factor boost rectifier with slope
    compensation,” Proceedings of Applied Power Electronics Conference.
    APEC '96, 1996, pp. 807-813 vol.2, doi: 10.1109/APEC.1996.500532.
    [7] 黃健淳,「250W 局部零電壓切換準諧振升壓型功率因數修正器之
    研製」,國立台灣科技大學電子工程系碩士論文,2009 年。
    [8] N. Mohan, T.M. Undeland and W.P. Robbins, Power Electronics:Converters, Applications, and Design. New York, U.S.: John Wiley & Sons
    Inc, 1989.
    [9] G. Hsieh, C. Tsai and S. Hsieh, “Design Considerations for LLC Series-Resonant Converter in Two-Resonant Regions,” 2007 IEEE
    Power Electronics Specialists Conference, 2007, pp. 731-736, doi:
    10.1109/PESC.2007.4342078.
    91
    [10]蔡富斌,「具同步整流之數位控制半橋串聯諧振轉換器之研製」,
    國立台灣科技大學電子工程系碩士論文,2012 年。
    [11]吳義利,「切換式電源轉換器原理與實用技術設計(實例設計導
    向)」,文笙書局股份有限公司,2018 年。
    [12]G. Hsieh, C. Tsai and W. Hsu, “Synchronous Rectification LLC SeriesResonant Converter,” APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 2007, pp. 1003-
    1009, doi: 10.1109/APEX.2007.357637.
    [13]I. Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, “An
    Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission,” in Proceedings of the IEEE, vol. 101, no. 6,
    pp. 1302-1311, June 2013, doi: 10.1109/JPROC.2013.2243691.
    [14]Chwei-Sen Wang, G. A. Covic and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive
    power transfer systems,” in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004, doi:
    10.1109/TIE.2003.822038.
    [15]S. Lukic and Z. Pantic, “Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles,” in IEEE Electrification
    Magazine, vol. 1, no. 1, pp. 57-64, Sept. 2013, doi:
    10.1109/MELE.2013.2273228.
    [16]Y. Kim and K. Jin, “Design and Implementation of a Rectangular-Type
    Contactless Transformer,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, Dec. 2011, doi:
    10.1109/TIE.2011.2130490.
    [17]D. Thenathayalan and J. Park, “Wide-Air-Gap Transformer Model for
    the Design-Oriented Analysis of Contactless Power Converters,” in
    92
    IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-
    6359, Oct. 2015, doi: 10.1109/TIE.2015.2423662.
    [18]Chwei-Sen Wang, O. H. Stielau and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct.
    2005, doi: 10.1109/TIE.2005.855672.
    [19]王思凱,「高效能 7 kW 無線功率傳輸系統之研製」,國立台灣科
    技大學電子工程系碩士論文,2019 年。
    [20]R. Chen et al., “Analysis and parameters optimization of a contactless
    IPT system for EV charger,” 2014 IEEE Applied Power Electronics
    Conference and Exposition - APEC 2014, 2014, pp. 1654-1661, doi:
    10.1109/APEC.2014.6803528.
    [21]C. Zheng et al., “High-Efficiency Contactless Power Transfer System
    for Electric Vehicle Battery Charging Application,” in IEEE Journal of
    Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp.
    65-74, March 2015, doi: 10.1109/JESTPE.2014.2339279.
    [22]Chwei-Sen Wang, G. A. Covic and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive
    power transfer systems,” in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004, doi:
    10.1109/TIE.2003.822038.
    [23]Chwei-Sen Wang, O. H. Stielau and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct.
    2005, doi: 10.1109/TIE.2005.855672.
    [24]A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos and M.
    Huemer, “A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power,” in
    93
    IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6338-
    6348, Nov. 2015, doi: 10.1109/TPEL.2015.2410216.
    [25]E. Bou, R. Sedwick and E. Alarcon, “Maximizing efficiency through
    impedance matching from a circuit-centric model of non-radiative resonant wireless power transfer,” 2013 IEEE International Symposium
    on Circuits and Systems (ISCAS), 2013, pp. 29-32, doi: 10.1109/ISCAS.2013.6571774.
    [26]Richtek Technology Corp., “Classification and Characterization of
    Various Inductors,” Application Note AN053, Jun. 2017.
    [27]Chang Sung Corporation, “MAGNETIC POWDER CORES,”
    Datasheet, 2006.
    [28]Infineon Technologies, “PFC boost converter design guide,” Application Note, Revision1.1, Feb. 2016.
    [29]Champion Microelectronic Corp., “CU6510/12V Family,” Application Note, Rev1.0, Jan. 2020.
    [30]TDK Corp., “Mn-Zn Ferrite Material characteristics,” Datasheet, Mar.
    2020.
    [31]Champion Microelectronic Corp., “CU6901V for True NoStandBy,”
    Application Note, Rev1.0, Jan. 2020.

    無法下載圖示 全文公開日期 2024/08/24 (校內網路)
    全文公開日期 2024/08/24 (校外網路)
    全文公開日期 2024/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE