簡易檢索 / 詳目顯示

研究生: 李貝薿
Pei-Ni Li
論文名稱: 水相AgInS2與AgInSe2量子點合成及量子點敏化太陽能電池應用
Aqueous synthesis of AgInS2 and AgInSe2 quantum dots for quantum dots-sensitized solar cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 李昇隆
Shern-Long Lee
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 量子點敏化太陽能電池AgInS2量子點AgInSe2量子點水相合成
外文關鍵詞: Quantum dots-sensitized solar cell, AgInS2 quantum dots, AgInSe2 quantum dots, Aqueous synthesis
相關次數: 點閱:445下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究藉由微波輔助法預先合成水相不含重金屬離子之AgInS2 (AIS)與AgInSe2 (AISe)量子點,反應時間僅需10分鐘,利用微波可瞬時升溫至反應溫度的特性,在定溫均勻受熱環境一步合成出量子點,不需再經配位體置換之表面改質,製程簡易且快速。
  將TiO2光電極浸泡於量子點敏化溶液,接著用連續離子吸附與反應沉積ZnS鈍化層,分別與Cu2S或CuS背電極組裝成電池元件,使用AIS量子點之電池元件光電轉換效率為2.72% (Jsc = 9.75 mA/cm2, Voc = 432 mV, FF = 64.6%),而使用L-Glutathione (GSH)做為包覆劑製成的AISe量子點並透過TiCl4化學沉積前處理程序之電池元件光電轉換效率達到5.68% (Jsc = 16.86 mA/cm2, Voc = 664 mV, FF = 50.8%)。將不同雙功能分子Thioglycolic acid (TGA)、Mercaptopropionic acid (MPA)與GSH做為包覆劑製成的AISe量子點電池元件進行電化學分析,證實以GSH所製備而成的AISe量子點與TiO2間有較長的電子生命週期與較短的電子傳遞時間,因此具有最佳的光電轉換效率。


  In this study, we synthesized heavy metal-free AgInS2 (AIS) and AgInSe2 (AISe) quantum dots (QDs) via the microwave-assisted synthetic route within 10 min in an aqueous-phase system. Under microwave irradiation, precursor molecules directly absorb the microwave energy and heats up more efficiently. The synthesis process is simple, rapid and effective without further surface modification of ligand exchange.
  The quantum dot-sensitized solar cells (QDSSCs) were constructed with QDs and co-adsorbent deposited on TiO2 film. ZnS deposited as passivation layer by successive ionic layer adsorption and reaction (SILAR). Counter electrode made from Cu2S or CuS components assembly with photoelectrode to become the cell component. The performance showed that AIS QDSSC had a power conversion efficiency of 2.72% (Jsc = 9.75 mA/cm2, Voc = 432 mV, FF = 64.6%) under full one sun irradiation (AM 1.5 G, 100 mW/cm2). Further, the performance showed that the GSH-capped AISe QDSSC with TiCl4 treatment exhibited an excellent power conversion efficiency of 5.68% (Jsc = 16.86 mA/cm2, Voc = 664 mV, FF = 50.8%) under full one sun irradiation. This is because GSH-capped AISe QDs allowed for more efficient electron transport and less charge recombination than did the TGA-capped AISe and MPA-capped AISe QDs, as revealed by the electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) measurements.

摘要 Abstract 總目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 太陽能電池之發展概況 1.2.1 第一代-矽晶型太陽能電池 1.2.2 第二代-薄膜型太陽能電池 1.2.3 第三代-敏化型太陽能電池 1.3 研究動機與內容 第二章 文獻回顧 2.1 半導體奈米材料之特性 2.1.1 奈米晶體之能隙 2.1.2 量子侷限效應(Quantum confinement effect) 2.1.3 衝擊離子化效應(Impact ionization effect)與歐傑再結合(Auger recombination) 2.2 量子點敏化太陽能電池(Quantum dot-sensitized solar cell, QDSSC) 2.2.1 起源與發展 2.2.2 工作原理 2.2.3 元件介紹 2.2.4 量子點敏化劑製備方法 2.2.5 銀基(Ag-based)化合物量子點敏化劑介紹與文獻回顧 第三章 實驗方法與原理 3.1 實驗藥品 3.2 實驗儀器 3.3 整體實驗概觀 3.4 導電玻璃基板清洗 3.5 光電極薄膜製備 3.6 量子點敏化劑之製備與吸附 3.6.1 前驅物母液配製 3.6.2 量子點敏化劑之共吸附劑配製 3.7 ZnS鈍化層沉積 3.7.1 前驅物溶液配製 3.7.2 ZnS鈍化層合成 3.8 背電極製備 3.8.1 前驅物溶液配製 3.8.2 背電極薄膜製作 3.9 多硫化物電解液配製 3.10 元件封裝 第四章 實驗結果與討論 4.1 水相AIS與AISe量子點 4.1.1 光學性質 4.1.2 量子點敏化太陽能電池元件之光電轉換效率分析 4.2 不同雙功能分子製備水相AISe量子點材料分析 4.2.1 光學性質 4.2.2 結構分析 4.2.3 載子生命週期分析 4.3 不同雙功能分子製備水相AISe量子點敏化太陽能電池元件分析 4.3.1 光電極薄膜吸附量子點之分析 4.3.2 光電轉換效率分析 4.3.3 入射光電轉換效率(Incident photon to current conversion efficiency, IPCE)分析 4.3.4 電化學阻抗(Electrochemical impedance spectroscopy, EIS)分析4.3.5 光強度調制光電流/光電壓(Intensity-modulated photocurrent/photovoltage spectroscopy, IMPS/IMVS)分析 第五章 結論與未來展望 參考文獻

[1]J. P. Holdren, Science, 2008, 319, 424–434.
[2]M. Grätzel, Nature, 2001, 414, 338–344.
[3]E. Centurioni and D. Iencinella, IEEE Electron Device Lett., 2003, 24, 177–179.
[4]O. Schultz, S. W. Glunz and G. P. Willeke, Prog. Photovolt. Res. Appl., 2004, 12, 553–558.
[5]K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama and S. Okamoto, IEEE J. Photovoltaics, 2014, 4, 1433–1435.
[6]I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Progr. Photovolt.: Res. Appl., 2008, 16, 235–239.
[7]A. G. Aberle, Thin Solid Films, 2009, 517, 4706–4710.
[8]M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: Res. Appl., 2014, 22, 701–710.
[9]H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402–403.
[10]B. O'Regan and M. Grätzel, Nature, 1991, 353, 737–740.
[11]E. Groeneveld, Synthesis and optical spectroscopy of (hetero)-nanocrystals. Ph.D. Thesis, Utrecht University, 2012.
[12]G. Sun, The Intersubband Approach to Si-based Lasers, Advances in Lasers and Electro Optics, Nelson Costa and Adolfo Cartaxo (Ed.), 2010.
[13]Y. Wang and N. Herron, J. Phy. Chem., 1991, 95, 525–532.
[14]R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink and C. de Mello Donegá, Size Effects on Semiconductor Nanoparticles. In Nanoparticles: Workhorses of Nanoscience Nanoparticles. Springer Berlin Heidelberg (Ed.), 2014; pp 13−51.
[15]W. R. Algar, K. Susumu, J. B. Delehanty and I. L. Medintz, Anal. Chem., 2011, 83, 8826–8837.
[16]R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 92, 186601.
[17]A. J. Nozik, Inorg. Chem., 2005, 44, 6893–6899.
[18]T. Takagahara and K. Takeda, Phys. Review B, 1992, 46, 15578.
[19]S. Kan, T. Mokari, E. Rothenberg and U. Banin, Nat. Mater., 2003, 2, 155–158.
[20]A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. Donegan, J. Phys. Chem. C, 2007, 111, 14628–14637.
[21]A. J. Nozik, Chem. Phys. Lett., 2008, 457, 3–11.
[22]G. Smestad, C. Bignozzi and R. Argazzi, Sol. Energy Mater. Sol. Cells, 1994, 32, 259–272.
[23]R. D. Schaller, V. M. Agranovich and V. I. Klimov, Nat. Phys., 2005, 1, 189–194.
[24]A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C. Johnson, Chem. Rev., 2010, 110, 6873–6890.
[25]O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik and M. C. Beard, Science, 2011, 334, 1530–1533.
[26]M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 074510.
[27]S. Rühle, M. Shalom and A. Zaban, ChemPhysChem, 2010, 11, 2290–2304.
[28]I. Hod and A. Zaban, Langmuir, 2014, 30, 7264–7273.
[29]P. V. Kamat, J. A. Christians and J. G. Radich, Langmuir, 2014, 30, 5716–5725.
[30]E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, J. Appl. Phys., 1982, 53, 1615–1621.
[31]J. C. Manifacier, M. De Murcia, J. P. Fillard and E. Vicario, Thin Solid Films, 1977, 41, 127–135.
[32]R. G. Gordon, MRS Bull., 2000, 25, 52–57.
[33]J. Desilvestro, M. Grätzel, L. Kavan, J. Moser and J. Augustynski, J. Am. Chem. Soc., 1985, 107, 2988–2990.
[34]G. Redmond, D. Fitzmaurice and M. Grätzel, Chem. Mater., 1994, 6, 686–691.
[35]I. Bedja, S. Hotchandani and P. V. Kamat, J. Phy. Chem., 1994, 98, 4133–4140.
[36]L. Li, X. Yang, J. Zhao, J. Gao, A. Hagfeldt and L. Sun, J. Mater. Chem., 2011, 21, 5573–5575.
[37]L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, J. Am. Chem. Soc., 2011, 133, 8458–8460.
[38]J. H. Bang and P. V. Kamat, ACS Nano, 2009, 3, 1467–1476.
[39]Z. Du, H. Zhang, H. Bao and X. Zhong, J. Mater. Chem. A, 2014, 2, 13033–13040.
[40]Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Phys. Chem. Chem. Phys., 2011, 13, 4659–4667.
[41]S. Günes and N. S. Sariciftci, Inorg. Chim. Acta, 2008, 361, 581–588.
[42]H. A. Greijer, J. Lindgren and A. Hagfeldt, J. Photochem. Photobiol., A, 2004, 164, 23–27.
[43]A. Hagfeldt and M. Grätzel, Acc. Chem. Res., 2000, 33, 269–277.
[44]M. Grätzel, Inorg. Chem., 2005, 44, 6841–6851.
[45]S.-W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481–1494.
[46]S. D. Sung, I. Lim, P. Kang, C. Lee and W. I. Lee, Chem. Commun., 2013, 49, 6054–6056.
[47]X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019–7029.
[48]Y. Bai, C. Han, X. Chen, H. Yu, X. Zong, Z. Li and L. Wang, Nano Energy, 2015, 13, 609–619.
[49]S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong and J. Bisquert, ACS Nano, 2015, 9, 908–915.
[50]S. Jiao, J. Wang, Q. Shen, Y. Li and X. Zhong, J. Mater. Chem. A, 2016, 4, 7214–7221.
[51]Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215–5222.
[52]J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao and X. Zhong, J. Mater. Chem. A, 2016, 4, 877–886.
[53]G. Hodes, J. Phys. Chem. C, 2008, 112, 17778–17787.
[54]V. Chakrapani, D. Baker and P. V. Kamat, J. Am. Chem. Soc., 2011, 133, 9607–9615.
[55]G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energy Mater. Sol. Cells, 2001, 70, 85–101.
[56]D. Sharma, R. Jha and S. Kumar, Sol. Energy Mater. Sol. Cells, 2016, 155, 294–322.
[57]G. Hodes, J. Manassen and D. Cahen, J. Electrochem. Soc., 1980, 127, 544–549.
[58]X. Jiang, Y. Xie, J. Lu, W. He, L. Zhu and Y. Qian, J. Mater. Chem., 2000, 10, 2193–2196.
[59]C. S. Kim, S. H. Choi and J. H. Bang, ACS Appl. Mater. Interfaces, 2014, 6, 22078–22087.
[60]S. S. Kalanur, S. Y. Chae and O. S. Joo, Electrochim. Acta, 2013, 103, 91–95.
[61]S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456–3462.
[62]I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert and A. Zaban, J. Phys. Chem. Lett., 2011, 2, 3032–3035.
[63]J. Kim, H. Choi, C. Nahm, C. Kim, S. Nam, S. Kang, D.-R. Jung, J. I. Kim, J. Kang and B. Park, J. Power Sources, 2012, 220, 108–113.
[64]S.-M. Yang, C.-H. Huang, J. Zhai, Z.-S. Wang and L. Jiang, J. Mater. Chem., 2002, 12, 1459–1464.
[65]D. R. Pernik, K. Tvrdy, J. G. Radich and P. V. Kamat, J. Phys. Chem. C, 2011, 115, 13511–13519.
[66]W. Li and X. Zhong, J. Phys. Chem. Lett., 2015, 6, 796–806.
[67]R. S. Mane and C. D. Lokhande, Mater. Chem. Phys., 2000, 65, 1–31.
[68]J. M. Doña and J. Herrero, J. Electrochem. Soc., 1997, 144, 4081–4091.
[69]Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304.
[70]A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H.Weller, J. Phys. Chem. B, 1999, 103 , 3065–3069.
[71]L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, Nat. Mater., 2003, 2, 382–385.
[72]U. Tohgha, K. Varga and M. Balaz, Chem. Commun., 2013, 49, 1844–1846.
[73]S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
[74]F. Sauvage, C. Davoisne, L. Philippe and J. Elias, Nanotechnology, 2012, 23, 395401.
[75]I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385–2393.
[76]K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert and X. Zhong, J. Am. Chem. Soc., 2015, 137, 5602–5609.
[77]J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong and L.-J. Wan, J. Am. Chem. Soc., 2016, 138, 4201–4209.
[78]S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li and X. Zhong, J. Phys. Chem. Lett., 2017, 8, 559–564.
[79]A. Sahasrabudhe and S. Bhattacharyya, Chem. Mater., 2015, 27, 4848–4859.
[80]J.-Y. Chang, C.-H. Li, Y.-H. Chiang, C.-H. Chen and P.-N. Li, ACS Appl. Mater. Interfaces, 2016, 8, 18878–18890.
[81]P. Boolchand and W. J. Bresser, Nature, 2001, 410, 1070–1073.
[82]B. Gates, Y. Wu, Y. Yin, P. Yang and Y. Xia, J. Am. Chem. Soc., 2001, 123, 11500–11501.
[83]U. Jeong, P. H. C. Camargo, Y. H. Lee and Y. Xia, J. Mater. Chem., 2006, 16, 3893–3897.
[84]R. E. Bailey and S. Nie, J. Am. Chem. Soc., 2003, 125, 7100–7106.
[85]X. Zhong, Y. Feng, W. Knoll and M. Han, J. Am. Chem. Soc., 2003, 125, 13559–13563.
[86]L. A. Swafford, L. A. Weigand, M. J. Bowers II, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman and S. J. Rosenthal, J. Am. Chem. Soc., 2006, 128, 12299–12306.
[87]A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee and G. J. Wang, Electrochem. Commun., 2010, 12, 1158–1160.
[88]J.-J. Wu, R.-C. Chang, D.-W. Chen and C.-T. Wu, Nanoscale, 2012, 4, 1368–1372.
[89]I. Hwang and K. Yong, ChemPhysChem, 2013, 14, 364–368.
[90]B. Liu, D. Wang, Y. Zhang, H. Fan, Y. Lin, T. Jiang and T. Xie, Dalton Trans., 2013, 42, 2232–2237.
[91]W. J. Mir, A. Swarnkar, R. Sharma, A. Katti, K. V. Adarsh and A. Nag, J. Phys. Chem. Lett., 2015, 6, 3915–3922.
[92]I. Hwang, M. Seol, H. Kim and K. Yong, Appl. Phys. Lett., 2013, 103, 023902.
[93]A. Tubtimtae, M.-W. Lee and G.-J. Wang, J. Power Sources, 2011, 196, 6603–6608.
[94]K.-C. Cheng, W.-C. Law, K.-T. Yong, J. S. Nevins, D. F. Watson, H.-P. Ho and P. N. Prasad, Chem. Phys. Lett., 2011, 515, 254–257.
[95]K. P. Kadlag, P. Patil, M. J. Rao, S. Datta and A. Nag, CrystEngComm, 2014, 16, 3605–3612.
[96]C. Cai, L. Zhai, Y. Ma, C. Zou, L. Zhang, Y. Yang and S. Huang, J. Power Sources, 2017, 341, 11–18.
[97]T. Sasamura, K. Okazaki, A. Kudo, S. Kuwabata and T. Torimoto, RSC Adv., 2012, 2, 552–559.
[98]Y. Wang, Q. Zhang, Y. Li and H. Wang, Nanoscale, 2015, 7, 6185–6192.
[99]M. Jagadeeswararao, A. Swarnkar, G. B. Markad and A. Nag, J. Phys. Chem. C, 2016, 120, 19461–19469.
[100]S. M. Kobosko, D. H. Jara and P. V. Kamat, ACS Appl. Mater.Interfaces, DOI: 10.1021/acsami.6b14604.
[101]L.-C. Chen, Y.-C. Ho, R.-Y. Yang, J.-H. Chen and C.-M. Huang, App. Surf. Sci., 2012, 258, 6558–6563.
[102]T. Kameyama, Y. Douke, H. Shibakawa, M. Kawaraya, H. Segawa, S. Kuwabata and T. Torimoto, J. Phys. Chem. C, 2014, 118, 29517–29524.
[103]Z.-C. Wang, S.-H. Xu, C. Wang, L. Zhu, F. Bo, X.-Y. Lin, Z.-Y. Wang and Y.-P. Cui, RSC Adv., 2015, 5, 46186–46191.
[104]G. Halder and S. Bhattacharyya, J. Mater. Chem. A, 2017, 5, 11746–11755.
[105]C. Ji, Y. Zhang, X. Zhang, P. Wang, H. Shen, W. Gao, Y. Wang and W. W. Yu, Nanotechnology, 2017, 28, 065602.
[106]Y.-R. Ho and M.-W. Lee, Electrochem. Commun., 2013, 26, 48−51.
[107]W.-C. Yang and M.-W. Lee, J. Electrochem. Soc., 2014, 161, H92−H96.
[108]P.-C. Huang, W.-C. Yang and M.-W. Lee, J. Phys. Chem. C, 2013, 117, 18308–18314.
[109]S. Zhou, J. Yang, W. Li, Q. Jiang, Y. Luo, D. Zhang, Z. Zhou and X. Li, J. Electrochem. Soc., 2016, 163, D63−D67.
[110]I. Bilecka and M. Niederberger, Nanoscale, 2010, 2, 1358–1374.
[111]M. Baghbanzadeh, L. Carbone, P. D. Cozzoli and C. O. Kappe, Angew. Chem., Int. Ed., 2011, 50, 11312–11359.
[112]M. B. Gawande, S. N. Shelke, R. Zboril and R. S. Varma, Acc. Chem. Res., 2014, 47, 1338–1348.
[113]Y.-J. Zhu and F. Chen, Chem. Rev., 2014, 114, 6462–6555.
[114]R. G. Pearson, J. Chem. Educ., 1968, 45, 581–587.
[115]J. Tauc and A. Menth, J. Non-Cryst. Solids, 1972, 8–10, 569–585.
[116]J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, Phys. Rev. B, 1973, 7, 4485–4490.
[117]J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper and F. Thiel, Phys. Rev. B, 1974, 9, 1719–1723.
[118]P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon and K. Rajan, Comput. Mater. Sci., 2014, 83, 185–195.
[119]V. Chakrapani, D. Baker and P. V. Kamat, J. Am. Chem. Soc., 2011, 133, 9607–9615.
[120]R. Xie, M. Rutherford and X. Peng, J. Am. Chem. Soc., 2009, 131, 5691–5697.
[121]S. Sadhu and A. Patra, J. Phys. Chem. C, 2012, 116, 15167–15173.
[122]W.-D. Xiang, H.-L. Yang, X.-J. Liang, J.-S. Zhong, J. Wang, L. Luo and C.-P. Xie, J. Mater. Chem. C, 2013, 1, 2014–2020.
[123]S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Gräetzel, Chem. Commun., 2005, 4351–4353.
[124]B. C. O'Regan, J. R. Durrant, P. M. Sommeling and N. J. Bakker, J. Phys. Chem. C, 2007, 111, 14001–14010.
[125]Z. Du, H. Zhang, H. Bao and X. Zhong, J. Mater. Chem. A, 2014, 2, 13033–13040.
[126]N. Guijarro, Q. Shen, S. Giménez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. Toyoda and R. Gómez, J. Phys. Chem. C, 2010, 114, 22352–22360.
[127]S. M. Farkhani and A. Valizadeh, IET Nanobiotechnol., 2014, 8, 59–76.
[128]S. S. M. Rodrigues, D. S. M. Ribeiro, J. X. Soares, M. L. C. Passos, M. L. M. F. S. Saraiva and J. L. M. Santos, Coord. Chem. Rev., 2017, 330, 127–143.

無法下載圖示 全文公開日期 2022/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE