簡易檢索 / 詳目顯示

研究生: 林建鴻
Jian-Hong Lin
論文名稱: 均質進氣壓燃引擎之參考模型適應控制
Model Reference Adaptive Control of Homogeneous Charge Compression Ignition Engines
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 黃安橋
An-Chyau Huang
吳浴沂
Yuh-Yih Wu
呂百修
Andrew Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 參考模型適應控制均質進氣壓燃引擎
外文關鍵詞: MRAC, HCCI
相關次數: 點閱:263下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章利用參考模型適應性之技術設計控制器來控制單氣缸均質進氣壓燃(Homogeneous Chagre Compression Ignition, HCCI) 引擎的燃燒時間點。
    控制的目標為在固定的引擎轉速下,當引擎內部的參數,如引擎排氣端的熱傳係數或油氣混合物性質,
    隨時間緩慢改變時進行燃油切換,仍能維持住50%燃油燃燒時間點在所設定的時間點。
    燃燒時間點的控制乃藉由進氣時開啟排氣閥門的再回吸揚程
    (Rebreathing Lift) 來操控進氣行程結束時汽缸內混合氣體的溫度。
    為了便於適應性控制器的設計,在設計時一個單缸HCCI引擎之高階模型將被簡化成只包含前後循環中燃燒時間點動態的離散雙線性係數模型。
    另外,要將所設計的適應性控制器實現需要燃油注入量的前授訊號及燃燒時間角回授訊號。
    本文將利用穩定性的分析及在高階模型建構的閉迴路模擬下,展示所設計的適應性控制器在汽缸排氣端熱傳係數隨時間緩慢改變時,
    能藉著穩定雙線性動態系統來控制燃燒時間點在所設定的值。


    This thesis presents a model reference adaptive controller to
    regulate ignition timing of a homogeneous charge compression
    ignition (HCCI) engine with high dilution in the presence of
    uncertainty or unknown variation in plant parameters such as heat
    transfer coefficient and cylinder charge properties.The control of the combustion timing is based
    on manipulating the charge temperature through internal dilution,
    which is achieved by controlling the lift of a secondary opening of
    the exhaust valve, also known as the rebreathing lift. The model
    reference adaptive controller is designed based on a simplified
    bilinear parametric model which contains only the cycle-to-cycle
    ignition timing dynamics. Implementation of the designed adaptive
    controller requires feedforward information of the injected fuel and
    feedback information of the combustion timings. It is shown through
    stability analysis and closed-loop simulation of a full-order
    engine model that the adaptive controller is able to regulate the
    combustion timing to desired set-point by stabilizing the
    bilinear dynamics when heat transfer coefficient are slowly changing
    with time.

    目錄 1緒論 1 1.1研究背景 ................................. 1 1.2文獻探討 ................................. 3 1.3研究目的 ................................. 5 1.4論文架構 ................................. 5 2模型組成 6 2.1引擎循環的延遲效應 ........................... 7 2.2循環平均流量 .............................. 8 2.3進氣歧管之動態行為 ........................... 10 2.4進氣閥門關閉時(intake valve closing, IVC)汽缸內的狀態 ....... 10 2.5燃燒模型 ................................. 11 2.5.1第一相:進氣閥門關閉至開始燃燒 (Start of Combustion, SOC) 12 2.5.2第二相:燃燒過程 ........................ 13 2.5.3第三相:多變膨脹過程 ...................... 14 2.5.4第四相:排氣過程 ........................ 14 2.6排氣歧管之動態行為 ........................... 15 2.7模型討論 ................................. 17 3穩態溫度分析 18 3.1進氣特性 (Tbd → Ter → Tivc) ...................... 19 3.2燃燒特性 (Tivc → Tbd).......................... 22 3.3溫度的平衡點與開迴路動態軌跡 ..................... 23 3.4控制軌跡 ................................. 26 4控制器設計 33 4.1模型簡化 ................................. 34 4.2參考模型適應性控制器設計 ....................... 38 4.3收斂性分析 ................................ 40 5模擬結果 46 5.1 Regulation:熱傳係數改變前,燃油切換 ................. 47 5.2 Regulation:熱傳係數改變之後進行燃油切換 .............. 47 5.3 Regulation:油氣混合物特性改變,燃油切換 .............. 49 5.4 Regulation:進氣歧管的溫度 T1受到擾動,燃油切換 .......... 51 5.5 Tracking :燃燒時間點 .......................... 54 6結論與未來展望 59 6.1結論 ................................... 59 6.2未來展望 ................................. 60 附錄符號定義 61 參考文獻 65

    [1] http://bioage.typepad.com/greencarcongress/.
    [2] J. Chen and W. Stevens, “Autoignition and control of .ameless combustion,” Department of Energy, Tech. Rep., August 2002.
    [3] J. C. Livengood and P. C. Wu, “Correlation of autoignition phenomena in internal combustion engines and rapid compression machines,” in Proceedings of Fifth International Symposium on Combustion, 1955, pp. 347–356.
    [4] J. O. Olsson, P. Tunestal, B. Johansson, S. Fiveland, R. Agama, M. Willi, and D. Assanis, “Compression ratio in.uence on maximum load of a natural gas fueled HCCI engine,” SAE paper 2002-01-0111.
    [5] D. S. Stanglmaier and E. Roberts, “Homogenous charge compression ignition (HCCI): Bene.ts, compromises, and future engine applications,” SAE paper 1999-01-3682.
    [6] P. Najt and D. Foster, “Compression-ignited homegeneous charge combus-tion,” SAE paper 830264, 1983.
    [7] R. H. Thring, “Homegeneous-charge compression-ignition (HCCI) engines,” SAE paper 892068.
    [8] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion timing and duration of homogeneous charge cmpression ignition (HCCI) en-gines,” in Proc. of the American Control Conf., 2006, pp. 1857–1862.
    [9] M. P. Halstead, L. J. Kirsch, and C. P. Quinn, “The autoignition of hydro-
    carbon fuels at high temperatures and pressures, .tting of a mathematical model,” Combustion and Flame, vol. 30, pp. 45–60, 1977.
    [10] G. Shaver, J. Gerdes, P. Jain, P. Caton, and C. Edwards, “Modeling for control of HCCI engines,” in Proc. of the American Control Conf., 2003, pp. 749–754.
    [11] ——, “Dynamic modeling of residual-a.ected hcci engines with variable valve actuation,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 127, no. 3, pp. 374–381, 2005.
    [12] G. Shaver and J. Gerdes, “Cycle-to-cycle control of HCCI engines,” 2003 ASME Proc. of International Mechanical Engineering Congress and Exposi-tion IMECE2003-41966.
    [13] N. J. Killingsworth, S. M. Aceves, D. L. Flowers, and M. Krsti’c, “A simple HCCI engine model for control,” to appear at CCA/CACSD/ISIC, October 2006.
    [14] D. J. Rausen, A. G. Stefanopoulou, J.-M. Kang, J. A. Eng, and T.-W. Kuo, “A mean-value model for control of homogeneous charge compression igni-tion (HCCI) engines,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 127, no. 3, pp. 355–362, 2005.
    [15] J. Martinez-Frias, S. M. Aceves, D. Flowers, J. R. Smith, and R. Dibble, “HCCI control by thermal management,” SAE paper 2000-01-2869.
    [16] C. J. Chiang and A. G. Stefanopoulou, “Control of thermal ignition in gasoline engines,” in Proc. of the American Control Conf., 2005, pp. 3847–3852.
    [17] N. Ravi, M. J. Roelle, and J. C. Gerdes, “Controller-observer implementation for cycle-to-cycle control of an HCCI engine,” 2007 ASME Proc. of Interna-tional Mechanical Engineering Congress IMECE2007-42371.
    [18] M. V. Subbotin, K. L. Knierim, S. Park, A. Kojic, and J. Ahmed, “Modeling and control of a two stroke HCCI engine,” in Proc. of the American Control Conf., 2008, pp. 698–703.
    [19] C. J. Chiang and A. G. Stefanopoulou, “Steady-state multiplicity and stabil-ity of thermal equilibria in homogeneous charge compression ignition (HCCI) engines,” in 43rd IEEE Conference on Decision and Control, vol. 2, 2004, pp. 1676–1681.
    [20] H.-H. Liao, N. Ravi, and A. F. Jungkunz, “Representing recompression HCCI dynamics with a switching linear model,” in Proc. of the American Control Conf., 2010, pp. 3803–3808.
    [21] N. J. Killingsworth, S. M. Aceves, D. L. Flowers, and M. Krsti’c, “Extremum seeking tuning of an experimental HCCI engine combustion timing controller,” in Proc. of the American Control Conf., 2007, pp. 3665–3670.
    [22] J.-M. Kang and M. Drunzhinina, “HCCI engine control strategy with external EGR,” in Proc. of the American Control Conf., 2010, pp. 3783–3790.
    [23] C. J. Chiang, A. G. Stefanopoulou, and M. Jankovi’c, “Nonlinear observer-based control of load transitions in homogeneous charge compression ignition (HCCI) engines,” IEEE Transactions on Control Systems Technology (Special Issue on Control Applications in Automotive Engineering), May 2007.
    [24] C. J. Chiang, C.-C. Huang, and M. Jankovic, “Discrete-time cross-term for-warding design of robust controllers for HCCI engines,” in Proc. of the Amer-ican Control Conf., 2010, pp. 2218–2223.
    [25] A. M. Taylor’c, “Science review of internal combustion engines,” in Energy Policy, 2008, pp. 4657–4667.
    [26] P. Loannou and B. Fidan, Adaptive Control Tutorial. Society of Industrial and Applied Mathematics, 2006.
    [27] Y. Jin, X. Sun, and C. Fang, “Adaptive control of bilinear systems with bounded disturbances, and its application,” Control Eng. Practice, vol. 4, no. 6, pp. 815–822, 1996.
    [28] G. Goodwin, P. Kamadge, and P. Caines, “Discrete time multivariable adap-tive control,” IEEE Transactions on Automatic Control, vol. 25, no. 3, June 1980.
    [29] C. J. Chiang, “Modeling and contorl of homogeneous charge compression ig-nition engines with high dilution,” Ph.D. dissertation, University of Michigan, 2007.
    [30] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill Inc, 1988.
    [31] C. J. Chiang, A. G. Stefanopoulou, and M. Jankovi’c, “Nonlinear control of transitions between thermal equilibria in homogeneous charge compression ignition (HCCI) engines,” in Proc. of the 8th International Symposium on Advanced Vehicle Control (AVEC06), August 2006, pp. 617–622.
    [32] C. Ji and P. D. Ronney, “Modeling of engine cyclic variations by a thermo-dynamic model,” SAE paper 2002-01-2736.

    QR CODE