簡易檢索 / 詳目顯示

研究生: 謝志昇
Chin-sheng Hsieh
論文名稱: 小型二足步行機器人製作與控制
The Development and Control of a Miniature Biped Walking Robot
指導教授: 施慶隆
Ching-long shih
口試委員: 劉昌煥
Chang-huan Liu
李文猶
wen-you Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 二足步行機器人動態步行FPGANIOSAI馬達
外文關鍵詞: Biped Robot, dyanmic walking, FPGA, NIOS, AIMotor
相關次數: 點閱:369下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為製作及發展具行走能力的小型二足步行機器人,本文藉由簡單的機構設計,並利用AI伺服馬達設計二足步行機器人。經由向量解析法,求取機器人的位置向量、建立機器人的動態方程式,並規劃二足步行機器人動態步行週期以及腰部與足部的軌跡。二足步行機器人使用單軸PD控制器控制各關節馬達的位置及力矩。本文使用Altera公司所發展的Nios嵌入式系統,此系統可藉由FPGA實現所需要的硬體以及使用C語言發展系統軟體。最後實驗證明所設計的小型二足步行機器人可以在地面上以每秒4公分之速度穩定的步行。


For implementation and development of a miniature biped walking
robot, this thesis utilizes simple mechanism design methods and uses to
establish a prototype biped robot. The biped’s dynamic walking motion is
planned by specifying trajectories of the hip and feet through biped
kinematics and inverse kinematics. The biped control system uses singleaxis
PD controller to control the position and the current of each joint
motor. The control hardware system of the biped robot consists of a Nios’
Development Kit with FPGA chips, and the control software is written in
C programming language. Finally, the experimental results shows that the
designed biped robot can walk in an even floor with a speed of 4 cm per
second.

第一章 緒論 1.1 前言 ...................................................1 1.2 文獻回顧 ...............................................2 1.3 研究目的 ...............................................6 第二章 二足步行機器人機構描述 2.1 機構設計簡介 ...........................................9 2.2 機構元件說明 .........................................12 2.3 機構設計流程 .........................................13 第三章 二足步行機器人數學模型 3.1 二足步行機器人模型及假設 .............................22 3.2 向量解析計算 .........................................24 3.3 二足機器人反運動學方程式 .............................27 3.4 動態平衡方程式 .......................................31 第四章 二足步行機器人步行軌跡規劃 4.1 步行模型定義 ...........................................34 4.2 動態步行週期規劃 .......................................35 第五章 二足步行機器人控制器設計與實現 5.1 二足步行機器人動態方程式建立 ...........................42 5.2 二足步行機器人控制器設計 ...............................45 5.3 二足步行機器人硬體架構 ...............................47 5.4 二足機器人步行控制器實現 ...............................52 第六章 實驗結果 6.1 AI馬達步級響應測試 ...................................56 6.2 二足步行機器人參數 ...................................58 6.3 二足步行機器人靜態重心計算 ...........................59 6.4 二足步行機器人動態步行實驗 ...........................62 第七章 結論與展望 7.1 結論 ...................................................68 7.2 未來展望 ..............................................69

[1] Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N. and
Tanie, K. “Planning walking patterns for a biped robot”, IEEE
Transactions on Robotics & Automation, Vol. 17, No. 3, pp.280–289,
June, 2001.
[2] Kato, I. and Tsuiki, H. “The hydraulically powered biped walking
machine with a high carrying capacity”, Fourth Symposium on
External Extremities. Dubrovnik: Yugoslav Committee for Electronics
and Automation.
[3] Raibert, M . “Legged robots that balance”, MIT Press, Cambridge,
MA. , 1986.
[4] Yamataka, M., Nakanishi, H., Yamabuchi, K. and Nakamura, A.
“Development of a small animal-type biped robot and its walking
control system”, Proceedings of the IEEE-RAS International
Conference on Humanoid Robots, pp. 197–204, 2001.
[5] Shan, J., Junshi, C. and Jiapin, C. “Design of central pattern generator
for humanoid robot walking based on multi-objective GA”,
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1930–1935, 2000.
[6] Furusho, J., Akihito, S., Masamichi, S. and Eichi, K. “Realization of
Bounce Gait in a Quadruped Robot with Articular–Joint -type legs”,
Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 697–702, 1995.
[7] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of Honda humanoid robot”, Proceedings IEEE International
Conference on Robotics and Automation , pp. 1321 –1326, 1998.
[8] H. Kitano, M. Fujita, S. Zrehen, and K. Kageyama , “Sony legged
robot for RoboCup challenge”, Proceedings IEEE International
Conference on Robotics and Automation, pp.2605 –2612, 1998.
[9] A.Sano, J. Furusho, “Control of Torque Distribution for the BLR-G2
Biped Robot”, Fifth International Conference on Robots in
Unstructured Environments,’ 91 ICAR, Vol. 1, pp.729-734, 1991.
[10] Cao Meifen, A. Kawamura, “An Evolutionary Design Scheme of
Neural Oscillatory Network for Generation of Biped Walking
Patterns”, 1998 5th International Workshop on Advanced Motion
Control, pp.666-671, 1998.
[11] Cao Meifen, A. Kawamura, “Generation of Humanoid Biped
Walking Patern Using Neural Oscillatory Network”, IEEE/ASME
International Conference on advanced Intelligent Mechatronics’97
pp.81, 1997.
[12] S. Hrose, “Design and Implementation of Intelligent Mobile Robots”,
IEEE International Conference on Robotics and Automation,
pp.171-175, 1996.
[13] Martin, J. B.,Classical Mechanisms, Addsion- Wesley Publishers,
Reading, MA, 1980.
[14] Huang, Q., Nakamura, Y. and Inamura, T. “Humanoids walk with
feedforward dynamic pattern and feedback sensory reflection”,
Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 4220–4225, 2001.
[15] F. Miyazaki and S. Arimoto, “A Control Theoretic Study on
Dynamic Biped Locomotion”, ASME Journal of Dynamics, Systems,
Measurement and Control, Vol. 102, pp. 232-239, 1980.
[16] Cheng, M.-Y. and Lin, C.-S. “Genetic algorithm for control design of
biped locomotion” , Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1315–1320, 1995.
[17] Arakawa, T. and Fukuda, T. “Natural motion trajectory generation of
biped locomotion robot using genetic algorithm through energy
optimization”, Proceedings of the 1996 IEEE International
Conference on Systems, Man and Cybernetics, pp. 1495–1500,1996.
[18] Goswami, A. “Postural stability of biped robots and the foot rotation
indicator (FRI) point”, International Journal of Robotics Research
18, pp.523–533, 2000.
[19] Hirai, K., “Current and Future Perspective of Honda Humanoid
Robot”, IEEE/RSI International Conf. On Intelligent Robots and
Systems, pp. 500-508, 1997.
[20] Song S.M and Waldron K.J., “Machines That Walks: The Adaptive
Suspension Vehicle”. Cambridge, MA: MIT Press, 1998.
[21] A.A. Grishin, A.M .Formal , sky, ,A.V. Lensky, , S.V. Zhitomirsky,
“Dynamic Walking of a Vehicle With Two Telescopic legs
Controlled by Two Drives”, The International Journal of Robotics
Research, Vol. 13, No. 2, April 1984.
[22] P.H. Channon, S.H. Hopkins and D.T. Pham, “Simulation and
Optimization of Gait for a Bipedal Robot”, Math Comput Modelling ,
pp.463-467, 1990.
[23] C.L Golliday, JR and H. Hemami, “An Approach to Analyzing Biped
Locomotion Dynamics and Designing Robot Locomotion Controls”,
optimization”, Proceedings of the 1996 IEEE International
Conference on Systems, Man and Cybernetics, pp. 1495–1500,1996.
[18] Goswami, A. “Postural stability of biped robots and the foot rotation
indicator (FRI) point”, International Journal of Robotics Research
18, pp.523–533, 2000.
[19] Hirai, K., “Current and Future Perspective of Honda Humanoid
Robot”, IEEE/RSI International Conf. On Intelligent Robots and
Systems, pp. 500-508, 1997.
[20] Song S.M and Waldron K.J., “Machines That Walks: The Adaptive
Suspension Vehicle”. Cambridge, MA: MIT Press, 1998.
[21] A.A. Grishin, A.M .Formal , sky, ,A.V. Lensky, , S.V. Zhitomirsky,
“Dynamic Walking of a Vehicle With Two Telescopic legs
Controlled by Two Drives”, The International Journal of Robotics
Research, Vol. 13, No. 2, April 1984.
[22] P.H. Channon, S.H. Hopkins and D.T. Pham, “Simulation and
Optimization of Gait for a Bipedal Robot”, Math Comput Modelling ,
pp.463-467, 1990.
[23] C.L Golliday, JR and H. Hemami, “An Approach to Analyzing Biped
Locomotion Dynamics and Designing Robot Locomotion Controls”,
75
IEEE Transactions on Automation Control, AC-22-6, Vol. 22, No. 6,
pp.963-972, 1997.
[24] J. Furusho and M. Masubuchi, “A Theoretically Motivated Reduce
Order Model for the Control of Dynamic Biped Locomotion”,
Journal of Dynamic System, Measurement, and Control, pp. 155-163,
June, 1987.
[25] Y . Takahashi, Y . Tomatani, Y . Matsui, Y .Honda, and T .Miura,
“Wire Driven Robot Hand”, Proceedings International Conference
on Industrial Electronics, Control, and Instrumentation, pp. 1293,
1997.
[26] Chih-Lyang Hwang , “A trajectory Tracking of Biped Robots Using
Fuzzy-Model-Based Sliding-Mode Control”, Proceeding of the 41th
IEEE Conference on Decision and Control Las Vegas, Nevada USA,
December 2002.
[27] Mitsuharu Morisawa , Yasutaka Fujimoto, Toshiyuki Murakami,
Kouhei Ohnishi, “A Walking Pattern Generation for Biped Robot
with Parallel Mechanism by Considering Contact Force”, The 27th
Annual conference of the IEEE Electronics Society.
[28] G.S. Hornby, S. Takamura, J. Yakono, U. Hanagata, T. Yamamoto,
“Evolving Robot Gaits with AIBO”, Proceeding of the 2000 IEEE
International Conference on Robotics and Automation San
Francisco .CA, April, 2000.
[29] Jun Suzuki, Daiki Ito, Taka Shi, Kageyau, Mitsuharu, Morisawa,
Kouhei, “A decentralized Real-time control for Bipel Robot”.
[30] Daiki Ito, Toshiyuki Murakami, Kouhei Ohnishi, “An Approach to
Generation of Smooth walking Pattern for Biped Robot”. Advanced
Motion Control, 2002. 7th International Workshop on 3-5, pp.98 -103 ,
July, 2002 .
[31] Ysnshong Shan and Yoaram Koren, “Design and Motion Planning of a
Mechanical Snake”. IEEE Transaction on system, man, and
Cybernetics, Vol. 23, No. 4, pp.1091–1100, July/August, 1993.
[32] Masaki Yamakita, Minoru Hashimoto, Takeshi Yamada, “Control of
Locomotion and Head Configuration of 3D Snake Robot”.
Proceedings of the 2003 IEEE International Conference on Robotics
& Automation Taipei, Taiwan, pp.2055–2060, September 14-19, 2003.
[33] Tomomichi Sugihara, Yoshihiko Nakamura, Hirochika Inoue,
“Realtime Humanoid Generation through ZMP Manipulation based
on Inverted Pendulum Control”. Proceedings of the 2002 IEEE
International Conference on Robotics & Automation Washington DC,
pp.1404–1409, May, 2002.
[34] Shuuji Kajita, Kazuo Tani, “Adaptive Gait Control of a Biped Robot
based on Realtime Sensing of the Ground Profile”. Proceedings of the
1996 IEEE International Conference on Robotics & Automation
Minneapolis, Minnesota- April6, pp.570–577, 1996.
[35] Shuuji Kajita, Member IEEE, Tomio Yamaura, “Dynamic Walking
Control of a Biped Robot Along a Potential Energy Conserving Orbit”.
IEEE Transactions on Robotics & Automation, Vol. 8, No. 4,
pp.430–438, August, 1992.
[36] Ching-Long Shih, “Synthesis for biped Robot”, Robotica , Printed in
united Kingdom ,Vol. 15, pp.599-607, 1997
[37] C.L Shih and W.A.Gruver. “Control of Biped Robot in the Doublesupport
Phase”. IEEE Transaction on systems, man & Cybernetics ,
Vol. 22, No. 3 , pp.729–735, July Aug, 1992.
[38] C.T. Chi , C.L Shih. “The Walking Trajectory Planning and Gait
Control of Biped Robot”, The Applied Simulation and Modeling, July,
in Banff Canada, 2000.
[39] C.L Shih. “The Dynamics and Control of a Biped Robot with seven
Degree of Freedom”. ASME Journal of Dynamic Systems
Measurement and control Vol. 18, No. 4 , pp.683-690, December,
1996.
[40] 紀捷聰 , 二足步行機器人的設計與控制, 國立台灣科技大學
電機工程系博士論文, 2001.
[41] 陳澄峰 , 二足機器人行走模式研究, 大葉大學機械工程學系
碩士論文, 2002.
[42] AI MOTOR-601’S USER MANUAL, MegaRobotics Ltd, 2000.

QR CODE