簡易檢索 / 詳目顯示

研究生: 陳臻
Chen Chen
論文名稱: 以現場可程式化閘陣列實現基於多維延遲陣列之高精度低元件利用率暨多通道數位至時間轉換器
FPGA High Accuracy Low Logic Utilization Multi-Channel Digital-to-Time Converter Based on Multi-Dimensional Delay Array
指導教授: 陳伯奇
Poki Chen
口試委員: 鍾勇輝
Yung-Hui Chung
林昌鴻
Chang-Hong Lin
盧志文
Chih-Wen Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 現場可程式化閘陣列多通道脈數位至時間轉換器脈衝產生器鎖相迴路多維延遲陣列延遲迴繞相位排序及選擇技術相位偏移
外文關鍵詞: Field Programmable Gate Array (FPGA), Multi-Channel, Digital-to-Time Converter, Pulse Pattern Generator, Phase-Locked Loop, Multi-Dimensional Delay Array, Delay Wrapping, Phase Sorting and Selection, Phase Shifting
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以多維延遲陣列為基礎,結合相位排序及選擇技術實現多通道數位至時間轉換器(Digital-to-Time Converter, DTC),將參考時脈訊號利用鎖相迴路(Phase-Locked Loop, PLL)進行相移,再透過延遲矩陣分割相位,產生精細的時間差,使得延遲矩陣中之所有延遲單元均由PLL精確控制,輸出相位均勻分佈於參考時脈週期內,形成三維延遲陣列,大舉降低此架構之邏輯元件利用率,並搭配延遲迴繞(Wrapping)效應排序與選擇輸出時序,以提高延遲時間之精度,實現高達2 ps的有效解析度,將此設計驗證於Altera Stratix IV,其擁有四組通道輸出,經量測之積分非線性誤差(Integral Nonlinearity, INL)分別為-2.24至2.36 LSB、-2.31至2.31 LSB、-2.38至1.91 LSB以及-2.06至2.01 LSB,微分非線性誤差(Differential Nonlinearity, DNL)分別為-2.13至2.92 LSB、-3.74至3.03 LSB、-2.77至2.48 LSB和-2.50至2.31 LSB,而其抖動約為3.63 LSB,此架構之性能優於大部分現有的類比設計,亦能幾乎完勝市售之昂貴儀器。爾後,為了降低開發成本,亦將電路執行於較低廉的Cyclone IV DE2-115 教育開發平台上,實現相同之解析度與通道數,其最佳之INL與DNL範圍分別為-4.15至2.83 LSB及-3.81至4.44 LSB,而最大抖動則為12.17 LSB。


    A multi-channel digital-to-time converter based on a multi-dimensional delay array is proposed in this thesis. Dividing the phase through the delay matrix with a phase-locked loop for phase shifting produces the fine stage difference. All delay cells in the delay matrix are precisely controlled by a PLL so that the output phases uniformly distribute within the reference clock period. For further resolution enhancement, the three-dimensional array is presented with phase sorting and selection after delay wrapping. It can ensure high enough accuracy and substantially reduce the logic utilization. For concept proof, the proposed DTC is implemented on an Intel Stratix-IV FPGA board to achieve a resolution up to 2 ps with low integral nonlinearities (INL) of -2.24 to 2.36 LSB, -2.31 to 2.31 LSB, -2.38 to 1.91 LSB, and -2.06 to 2.01 LSB. The corresponding differential nonlinearities (DNL) are -2.13 to 2.92 LSB, -3.74 to 3.03 LSB, -2.77 to 2.48 LSB, and -2.50 to 2.31 LSB, respectively. At the same time, its jitter is about 3.63 LSB. The performance is superior to a luxury commercial product, and most analog counterparts realized with full-custom designs. Furthermore, the circuit implements on a relatively cheap Cyclone IV DE2-115 educational development platform for cost reduction and achieves the same resolution and number of channels with the best INL and DNL performance of -4.15 to 2.83 LSB and -3.81 to 4.44 LSB, respectively. At the same time, its maximum jitter is about 12.17 LSB.

    摘 要 I ABSTRACT II 誌 謝 IV 目 錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的及方法 2 1-3 論文架構 4 第二章 數位至時間轉換器 5 2-1 數位至時間轉換器之概述 5 2-2 基於延遲線之數位至時間轉換器 6 2-3 基於計數器之數位至時間轉換器 8 2-4 基於進位鏈之數位至時間轉換器 9 2-5 基於延遲矩陣之數位至時間轉換器 12 2-6 基於游標尺式計數器之數位至時間轉換器 13 2-7 基於鎖相迴路陣列之精細相位分割數位至時間轉換器 16 2-8 結論 18 第三章 多維延遲陣列暨多通道之數位至時間轉換器理論與介紹 19 3-1 基於多維延遲陣列實現多通道數位至時間轉換器 19 3-1-1 鎖相迴路相位偏移及相位分割 22 3-1-2 以二維延遲陣列實現數位至時間轉換電路之精細級 24 3-1-3 以計數器實現數位至時間轉換電路之粗級 27 3-2 FPGA電路實現與問題 30 3-2-1 延遲迴繞效應 30 3-2-2 延遲線之佈局與佈線設計 33 3-2-3 搭配邏輯鎖與設計分區 37 3-2-4 FPGA合成 40 3-2-5 鎖相迴路之補償 44 3-2-6 中級與細級電路之校正 46 3-3 串列傳輸技術與控制模組 48 3-3-1 非同步收發傳輸器 48 3-3-2 CRC邏輯驗證與數位控制字組暫存器 50 第四章 實驗及量測結果 52 4-1 FPGA開發平台之簡介 52 4-2 量測儀器簡介 54 4-3 量測環境 55 4-3-1 電路傳輸至儀器之環境建立 55 4-3-2 自動化量測 57 4-4 實際校正與分析 59 4-4-1 過濾不穩定訊號及相位排序 59 4-4-2 選擇機制 61 4-5 量測結果 63 4-5-1 多通道共用一鎖相迴路之量測結果 63 4-5-2 各通道分別連接相異鎖相迴路之量測結果 68 4-5-3 以Cyclone IV實現之量測結果 75 4-5-4 以Stratix IV長期量測結果 83 4-6 量測總結 84 第五章 總結及未來展望 87 參考文獻 88

    [1] Agilent Technologies 81133A and 81134A 3.35 GHz Pulse Pattern Generators Data Sheet Version 1.5, Agilent Corporation, Dec. 2017. [Online]. Available: https://www.keysight.com/us/en/assets/7018-01085/data-sheets/5988-5549.pdf
    [2] Ting-Yuan Wang, Shih-Min Lin and Hen-Wai Tsao, "Multiple channel programmable timing generators with single cyclic delay line," in IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 4, pp. 1295-1303, Aug. 2004.
    [3] K. Inagaki, D. Antono, M. Takamiya, S. Kumashiro and T. Sakurai, "A 1-ps Resolution On-Chip Sampling Oscilloscope with 64:1 Tunable Sampling Range Based on Ramp Waveform Division Scheme," 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., Honolulu, HI, USA, 2006, pp. 61-62.
    [4] Yaqiang Liu et al., "A programmable high-resolution ultra-fast delay generator," in IEEE Transactions on Nuclear Science, vol. 50, no. 5, pp. 1487-1490, Oct. 2003.
    [5] C. -M. Lai, K. -W. Tan, Y. -J. Chen and T. -S. Chu, "A UWB Impulse-Radio Timed-Array Radar With Time-Shifted Direct-Sampling Architecture in 0.18-μm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 7, pp. 2074-2087, July 2014.
    [6] S. Al-Ahdab, A. Mäntyniemi and J. Kostamovaara, "A 12-bit digital-to-time converter (DTC) for time-to-digital converter (TDC) and other time domain signal processing applications," NORCHIP 2010, Tampere, Finland, 2010, pp. 1-4.
    [7] A. Elkholy, T. Anand, W. -S. Choi, A. Elshazly and P. K. Hanumolu, "A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC," in IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 867-881, April 2015.
    [8] J. Lemberg et al., "Digital Interpolating Phase Modulator for Wideband Outphasing Transmitters," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp. 705-715, May 2016.
    [9] X. Zheng et al., "An improved 40 Gb/s CDR with jitter-suppression filters and phase-compensating interpolators," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 2016, pp. 85-88.
    [10] S. Alahdab, A. Mäntyniemi and J. Kostamovaara, "A 12-bit digital-to-time converter (DTC) with sub-ps-level resolution using current DAC and differential switch for time-to-digital converter (TDC)," 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 2012, pp. 2668-2671.
    [11] Y. -H. Kao and T. -S. Chu, "A Direct-Sampling Pulsed Time-of-Flight Radar With Frequency-Defined Vernier Digital-to-Time Converter in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2665-2677, Nov. 2015.
    [12] P. Napolitano, A. Moschitta, and P. Carbone, "A survey on time interval measurement techniques and testing methods," in 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010, pp. 181-186.
    [13] "IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp. 1-139, 2011
    [14] H. Jiang et al., "A 12-bit 2.5 GHz 0.37ps-Peak-INL Digital-to-Time Converter with Parasitic-Insensitive Charge-Based Phase Interpolator," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018, pp. 1-5.
    [15] T. E. Rahkonen and J. T. Kostamovaara, "The use of stabilized CMOS delay lines for the digitization of short time intervals," in IEEE Journal of Solid-State Circuits, vol. 28, no. 8, pp. 887-894, Aug. 1993.
    [16] J. Chapman, "High-performance CMOS-based VLSI testers: timing control and compensation," in Proceedings International Test Conference 1992, 1992, p. 59.
    [17] J. A. Gasbarro and M. A. Horowitz, "Integrated pin electronics for VLSI functional testers," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 331-337, 1989.
    [18] R. Giordano et al., "High-Resolution Synthesizable Digitally-Controlled Delay Lines," in IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3163-3171, Dec. 2015.
    [19] P. Kwiatkowski and R. Szplet, "Digital-to-time converter with pulse train generation capability," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 2018, pp. 1-6.
    [20] A.H. Chan, G.W. Robert, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line”, IEEE Transaction on Very Large Scale Integration Systems, vol. 12, No.1, Jan. 2004.
    [21] T. Otsuji and N. Narumi, "A 10-ps resolution, process-insensitive timing generator IC," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1412-1417, 1989.
    [22] T. Otsuji and N. Narumi, "A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array," IEEE Journal of Solid-State Circuits, vol. 26, no. 5, pp. 806-811, 1991.
    [23] J. Christiansen, "An integrated high resolution CMOS timing generator based on an array of delay locked loops," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 952-957, 1996.
    [24] P. Chen, P. -Y. Chen, J. -S. Lai and Y. -J. Chen, "FPGA Vernier Digital-to-Time Converter With 1.58 ps Resolution and 59.3 Minutes Operation Range," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 6, pp. 1134-1142, June 2010.
    [25] M. Zhang, H. Wang and Y. Liu, "Digital-to-Time Converter with 3.93 ps Resolution Implemented on FPGA Chips," IEEE Access, vol. 5, pp. 6842-6848, 2017.
    [26] P. Kwiatkowski, Z. Jachna, K. Różyc and J. Kalisz, "Accurate and low jitter time-interval generator based on phase shifting method," Review of Scientific Instruments, vol. 83, no. 3, 2012.
    [27] I. Vornicu, R. Carmona-Galán and Á. Rodríguez-Vázquez, "Time interval generator with 8 ps resolution and wide range for large TDC array characterization," Analog Integrated Circuits and Signal Processing, 2016.
    [28] Altera Corporation. Stratix IV Device Handbook. (2016). Accessed: Jan. 03, 2022 [Online]. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-iv/stratix4_handbook.pdf
    [29] P. Chen et al., "High-Precision PLL Delay Matrix With Overclocking and Double Data Rate for Accurate FPGA Time-to-Digital Converters," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 904-913, April 2020.
    [30] 陳翔渝, "以現場可程式化閘陣列實現延遲迴繞搭配排序與選擇機制之時間至數位轉換器及雙鎖相迴路與精密相位偏移控制法之數位至時間轉換器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2021.
    [31] Xilinx Inc. Virtex-6 FPGA Clocking Resources User Guide (v2.5 ed.). (2014). Accessed: Jan. 03, 2022. [Online]. Available: https://www.xilinx.com/support/documentation/user_guides/ug362.pdf
    [32] L. Vercesi, A. Liscidini and R. Castello, "Two-Dimensions Vernier Time-to-Digital Converter," in IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1504-1512, Aug. 2010.
    [33] K. Cui, X. Li, Z. Ren and R. Zhu, “A high-resolution Vernier delay generator using delay-adjustable carry chains on FPGAs,” IEEE Nuc. Sci. Symp. Med. Imag. Conf. (NSS/MIC), pp. 1-2, 2019.
    [34] P. Chen et al., "A 1-ps Bin Size 4.87-ps Resolution FPGA Time-to-Digital Converter Based on Phase Wrapping Sorting and Selection," in IEEE Access, vol. 10, pp. 126429-126439, 2022.
    [35] Intel. “Intel® Quartus® Prime Pro Edition Help version 21.1” Intel.com. https://www.intel.com/content/www/us/en/programmable/quartushelp/21.1/index.htm (accessed Jan. 17, 2022).
    [36] Intel. Intel® Quartus® Prime Pro Edition User Guide. (2021). Accessed: Jan. 17, 2022. [Online]. Available: https://cdrdv2.intel.com/v1/dl/getContent/666473?fileName=ug-qpp-design-optimization-683641-666473.pdf
    [37] Intel. Intel® Quartus® Prime Standard Edition User Guide. (2018). Accessed: Feb. 1, 2022. [Online]. Available:
    https://cdrdv2.intel.com/v1/dl/getContent/666615?fileName=ug-qps-compiler-683283-666615.pdf
    [38] Altera Corporation. Introduction to the Quartus® II Software (Version 7.2). Accessed: Feb. 1, 2022. [Online]. Available: http://www.cs.columbia.edu/~sedwards/classes/2008/4840/intro_to_quartus2.pdf
    [39] Intel. Intel Agilex® 7 Clocking and PLL User Guide. (2023). Accessed: May. 1, 2023. [Online]. Available: https://cdrdv2.intel.com/v1/dl/getContent/769133?fileName=ug-ag-clkpll-683761-769133.pdf
    [40] Intel-Altera. Stratix IV GX FPGA Development Board Reference Manual. (2012). Accessed: Jan. 14, 2022. [Online]. Available:
    https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/rm_sivgx_fpga_dev_board.pdf
    [41] Terasic Inc. DE2-115 User Manual. (2013). Accessed: Jan. 23, 2023. [Online]. Available:https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=502&FID=cd9c7c1feaa2467c58c9aa4cc02131af
    [42] Tektronix Inc. Digital Phosphor Oscilloscopes/Digital Serial Analyzers DPO/DSA70000 Series Data Sheet. (2009). Accessed: Feb. 24, 2022. [Online]. Available: https://download.tek.com/datasheet/4HW_19377_15_0.pdf
    [43] C. -C. Chen, C. -S. Hwang and K. -H. Chang, "All-Digital Cost-Efficient CMOS Digital-to-Time Converter Using Binary-Weighted Pulse Expansion," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 1094-1098, April 2020.
    [44] D. -H. Jung, K. Ryu, J. -H. Park and S. -O. Jung, "All-Digital Process-Variation-Calibrated Timing Generator for ATE With 1.95-ps Resolution and Maximum 1.2-GHz Test Rate," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 6, pp. 1015-1025, June 2018.
    [45] J. -C. Liu, C. -J. Huang and P. -Y. Lee, "A High-Accuracy Programmable Pulse Generator With a 10-ps Timing Resolution," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 621-629, April 2018.

    無法下載圖示 全文公開日期 2026/08/08 (校內網路)
    全文公開日期 2033/08/08 (校外網路)
    全文公開日期 2033/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE