簡易檢索 / 詳目顯示

研究生: 徐位蒂
Wei-Di Hsu (Pannie Chuchaisri)
論文名稱: 串並聯混合機構之大型雙足機器人設計與控制
Design and Control of an Adult-size Bipedal Robot with Serial-Parallel Hybrid Mechanism
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 蘇國和
Kuo-Ho Su
翁慶昌
Chin-Chung Wong
劉孟昆
Meng-Kun Liu
蘇順豐
Shun-Feng Su.
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 機器人雙足機器人線性滾珠螺桿五連桿機構
外文關鍵詞: Humanoid robot, bipedal robot, five-bar linkage, linear ball screw actuator
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙足機器人是近年來機器人學領域蓬勃發展的研究主題。在設計及製作機器人時,因使用串聯桿件連接直流伺馬達與減速機的連接方式,造成馬達的齒輪背隙,被機構桿件放大,產生雙足機器人步態系統的不穩定性。本論文使用一個創新雙足機器人之機構設計及簡易控制系統,此系統是由混合式機構桿件所組成,其中機器人俯仰(Pitch)軸向上機構,是經由平行桿件機構設計,配合線性滾珠螺桿所組成,控制線性滾珠螺桿的馬達控制器,係使用比例-微分控制(Proportional–Derivative Control;PD Control)系統,使能達成關節軌跡之追蹤。在機構上,平行桿件相較改善了串聯桿件背隙較大的問題,而直流伺服馬達與減速機搭配皮帶輪,則是用來提供翻滾(Roll)軸向運動。另外,本論文使用線性倒單擺模型(Linear Inverted Pendulum Model;LIPM)產生大型雙足機器人之步態規劃,其能使得機器人的行走速度達每秒5公分、最大步長亦為5公分,此大型雙足機器人共有19個自由度,其身高為160公分、重量為31公斤。


    In recent years, bipedal robots have become increasingly interested in the robotics area. Conventionally, serial connection with DC servomotor and gearbox is widely designed on the bipedal robots. However, for serial connection mechanism, the backlash from motor gears may cause the instability of the locomotion. This thesis designed a mechanism which can overcome this issue. The main objective of this thesis is to propose a novel mechanical design of an adult-size bipedal robot. The bipedal robot is configured with a hybrid mechanism. For the frontal movement, configured linear ball screw actuators with parallel mechanism which is considered to reduce backlash. DC servomotors with timing gears were installed to provide the rotary movement. In addition, this study develops a feedback controller for the linear ball screw actuator which used proportional-derivative (PD) to control the knee of the bipedal robot to track the desired joint angle trajectory. In addition, this study is based on linear inverted pendulum model (LIPM) for controlling the adult-size humanoid robot. Its maximum walking speed is 5 centimeters per second and its maximum walking length is also 5 centimeters. These proposed methods were verified with 19 degrees of freedom (DOF) structure. The height of the bipedal robot is 1.6 meters tall and the weight is 31 kilograms.

    指導教授推薦書 I 委員審定書 II 誌謝 III 中文摘要 IV ABSTRACT V 目錄 VI 圖目錄 IX 表目錄 XI 參數對照表 XII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 4 第2章 文獻探討 5 2.1 文獻回顧 5 2.1.1 雙足機器人之機構設計相關研究 5 2.1.2 雙足機器人之控制系統相關研究 7 2.1.3 應用線性滾珠螺桿相關研究 9 第3章 大型雙足機器人機構設計 11 3.1 機構設計主要概念 11 3.1.1 輕量化 11 3.1.2 低背隙 11 3.1.3 低價格 14 3.2 機構模組 14 3.2.1 線性滾珠螺桿模組 15 3.2.2 直流伺服馬達與減速機模組 18 3.3 機構設計 22 3.3.1 大型雙足機器人下半身之機構設計 22 3.3.2 大型雙足機器人上半身之機構設計 24 3.3.3 大型雙足機器人之機構設計 25 第4章 大型雙足機器人之控制系統架構 29 4.1 系統架構 29 4.1.1 動作控制器 30 4.1.2 下肢馬達控制器模組 31 4.2 軟體架構 33 4.2.1 線性倒單擺模型 33 4.2.2 大型雙足機器人之步態系統 36 4.2.3 全向步態生成 36 4.2.4 末端點軌跡生成 38 4.2.5 逆向運動學 38 4.2.6 機器人馬達控制系統 42 第5章 實驗結果與討論 44 5.1 五連桿機構之測試模組 44 5.1.1 五連桿測試模組之背隙比較 46 5.1.2 不同脈衝寬度調變下之電流值變化 48 5.2 單腳測試 49 5.3 控制器測試 51 5.3.1 馬達控制模組 51 5.3.2 控制器之通訊 54 5.4 大型雙足機器人下肢模擬測試 55 5.5 大型雙足機器人行走時角度變化情形 56 5.6 大型雙足機器人實測情形 58 第6章 結論與未來研究方向 59 6.1 結論 59 6.2 未來研究方向 60 參考文獻 61

    [1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” IEEE International Conference on Robotics & Automation, pp.1321-1326, 1998.
    [2] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The Intelligent ASIMO: System Overview and Integration,” Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 2478-2483, 2002.
    [3] K. Iwatsuka, K. Yamamoto, and K. Kato, “Development of a Guide Dog System for the Blind People with Character Recognition Ability,” Proc. ICPR 17th International Conference on Pattern Recognition, vol. 1, pp. 453-456, 2004.
    [4] R. A. Lindemann and C. J. Voorhees, “Mars Exploration Rover Mobility Assembly Design, Test and Performance,” IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp.450-455, 2005.
    [5] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M. R. Cutkosky, “Smooth Vertical Surface Climbing with Adhesion,” IEEE Transactions on Robotics, pp. 65-74, 2008.
    [6] A. M. M. Omer, Y. Oguar, H. Kondo, A. Morishima, G. Carbone, M. Ceccarelli, H. O. Lim, and A. Takanishi, “Development of a Humanoid Robot Having 2-DOF Waist and 2-DOF Trunk,” Proc. IEEE-RAS Int. International Conference on Humanoid Robots, pp.333-338, 2005.
    [7] I.W. Park, J. Y. Kim, J. Lee, and J. H. Oh, “Mechanical Design of Humanoid Robot Platform KHR-3 (KAIST Humanoid Robot – 3: HUBO),” Proc. IEEE-RAS Int. International Conference on Humanoid Robots, pp.321-326, 2005.
    [8] A. S. Kumar, A. G Krishnan, A. Sridhar, N. Kiruthika, and N. K. Prakash, “Design and Fabrication of Bipedal Robot,” International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-6, 2014.
    [9] A. Enoch, “A Three Degree of Freedom Leg Design, and Implementation in a Bipedal Robot,” IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 149-154, 2015.
    [10] Y. Yang, C. Semini, E. Guglielmino, N. G. Tsagarakis, and D. G. Caldwell, “Water vs. Oil Hydraulic Actuation for a Robot Leg,” International Conference on Mechatronics and Automation, pp.1940-1946, 2009.
    [11] X. Zhang, Q. Zeng, J. Zhang , and H. Dai, ”The Design of Four-bar Linkage of Large Inclined Angle Hydraulic Support,” International Conference on Engineering Computation, pp. 167-170, 2009.
    [12] B. Vanderborght, B. Verrelst, R. V. Ham, M. V. Damme, P. Beyl, and D. Lefeber, “Torque and Compliance Control of the Pneumatic Artificial Muscles in the Biped ”Lucy”,” in Proceeding of the 2006 IEEE International Conference on Robotics and Automation Orlando, pp. 842-847, 2006.
    [13] M. Morisawa, T. Yakoh, T. Murakami, and K. Ohnishi, “A Comparison Study Between Parallel and Serial Linked Structures in Biped Robot System,” IEEE Industrial Electronics Society, vol. 4, pp. 2614-2619, 2000.
    [14] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic Walking Control of a Biped Robot Along a Potential Energy Conserving Orbit,” IEEE Transactions on Robotics and Automation, vol. 8, no. 4, pp. 431–438, 1992.
    [15] 鍾睿洲,「具重心高度調適支雙足線性倒單擺步行控制」,國立台灣科技大學碩士論文,民國一百零一年。
    [16] N. Motoi, T. Suzuki, and K. Ohnishi, “A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulurn Mode,” IEEE International Conference on Industrial Technology, pp. 158-163, 2006.
    [17] J. Borenstein, “Control and Kinematic Design of Multi-Degree-of-Freedom Mobile Robots with Compliant Linkage,” IEEE Transactions on Robotics and Automation, vol. 11, no.1, 1995.
    [18] J. Zhao , X. Ye, H. Feng, and Z. Zhao, “Walking Pattern Generation of Biped Robot Using Trajectory Planning of Gravity Center,” IEEE International Conference on Mechatronics and Automation, pp. 890-895, 2014.
    [19] A. D. Ames, “Human-Inspired Control of Bipedal Walking Robots,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115-1130, 2014.
    [20] 連育德,「以平滑支撐向量回歸為基礎之大型雙足機器人類人倒單擺軌跡規劃」,國立台灣科技大學碩士論文,民國一百零二年。
    [21] W. J. Zhang, Q. Li, and L. S. Guo, “Integrated Design of Mechanical Structure and Control Algorithm for a Programmable Four-Bar Linkage,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 4, 1999.
    [22] H. Li, “The Research on the Module of Bipedal Robot Balance Adjustment,” International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 117-120, 2011.
    [23] V. L. Orekhov, C.S. Knabe, M.A. Hopkins, and D.W. Hong, “An Unlumped Model for Linear Series Elastic Actuator with Ball Screw Drives,” IEEE Conference on Intelligient Robots and Systems(IROS), pp. 2224-2230, 2015.
    [24] D. W. Robinson, J. E. Pratt, D. J. Paluska, and G. A. Pratt, “Series Elastic Actuator Development for a Biomimetic Walking Robot,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561-568, 1999.
    [25] Z. Li, T. Izumi, and H. Zhou, “An Optimal Lead of a Ball Screw-nut for Minimizing Energy Dissipated in a Linear Actuator,” IEEE International Conference on Mechatronics and Automation, pp. 1006-1011, 2008.
    [26] N. Paine, S. Oh, and L. Sentis, “Design and Control Considerations for High-Performance Series Elastic Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, 2014.
    [27] 洪錦桂,「以步態週期為基礎之雙足機器人步行控制」,國立台灣科技大學碩士論文,民國九十九年。

    無法下載圖示 全文公開日期 2021/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE