簡易檢索 / 詳目顯示

研究生: 汪敬凱
Ching-Kai Wang
論文名稱: 可見光驅動二氧化鈦/釩酸銀/石墨烯混成光觸媒之合成與催化特性研究
The Catalytic Characteristic of Visible Light Driven Photocatalyst TiO2/Ag3VO4/Graphene Hybrids
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 郭東昊
Dong-Hau Kuo
鄭國彬
Kou-Bin Cheng
田錦衡
Chin-Heng Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 二氧化鈦可見光光觸媒釩酸銀抗菌
外文關鍵詞: titanium dioxide, silver vanadate, visible light photocatalyst, antibacterial
相關次數: 點閱:297下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用水熱法和化學沉積法合成出二氧化鈦/釩酸銀/石墨烯複合光觸媒,並具有良好的可見光光催化效能。
    實驗總共分成三個部分,首先各光觸媒材料將通過X-ray繞射儀、電子能譜儀、拉曼光譜、比表面積分析儀等確認材料物化性質;SEM和TEM觀察光觸媒表面形貌;UV-vis DRS和光致發光譜確認光觸媒的吸光特性。第二部分在實驗中通過可見光和紫外光光源降解亞甲基藍(MB)、羅丹明B(RhB)和甲基橙(MO)的光降解實驗判斷各觸媒的光催化效能,並在實驗結果顯示二氧化鈦/釩酸銀/石墨烯複合具有最佳的光催化特性,其主要原因為二氧化鈦複合釩酸銀可見光光觸媒後可有效提升材料在可見光區的光催化效應,同時再結合石墨烯複合後異質結半導體和石墨烯間彼此良好的電子轉移效率降低了光觸媒的電子-電洞再結合率,進而提升光催化特性。第三部分為光觸媒材料的抗菌實驗探討,在結果上可發現光催化反應和金屬離子兩者機制同時進行下能有效的提升粉體的殺菌效率。
    本實驗在應用方面也將光觸媒結合聚氨酯(PU)高分子溶液通過靜電紡絲法製備出有機/無機複合奈米纖維膜,在TEM的結果顯示纖維和粉體間良好的分散性。在抑菌圈的試驗結果顯示纖維膜具有良好的抗菌能力,對未來靜電紡絲纖維膜運用在抗菌相關的製備參數做了先期的製程相關參數評估。


    In this study, the TiO2/Ag3VO4/Gp hybrids was successful prepared by hydrothermal and chemical deposition methods. The TiO2/Ag3VO4/Gp hybrids was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis diffuse reflection spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surfaces area analysis and photoluminescence analysis (PL). The samples performed high photocatalytic activity to degrade the organic pollutant such as the methyl blue (MB), Rhodamine B (RhB) and methyl orange (MO) in visible and UV light irradiation. The result showed the TiO2/Ag3VO4/Gp hybrids has the best photocatalytic activity to degrade the organic compound. It’s attributed to the heterjunction photocatalyst and graphene has the well surface interaction that can enhance the charge transfer to decrease the electron-hole recombination.
    The photocatalytic anti-bacterial activity in visible light. S. Aureus was employed to evaluate the anti-bacterial properties of synthesized photocatalyst. The result showed TiO2/Ag3VO4/Gp hybrids has two different mechanism in the anti-bacterial which were the metal ion resistance and photocatalytic anti-bacterial activity.
    For the application, the TiO2/Ag3VO4/Gp hybrids were combined with the polyurethane to use the electrospun method to prepare the TiO2/Ag3VO4/Gp/PU nanofiber membranes. TEM showed the hybrids has the well distribution in the nanofibers surface. Final, the zone of inhibition membranes effectiveness showed the well anti-bacterial activity for the membranes.

    摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xiii 第一章 前言 1 1-1 引言 1 1-2 光觸媒材料簡介 3 1-3 研究動機 4 第二章 文獻回顧 5 2-1石墨烯介紹 5 2-1-1 石墨烯發現與結構 5 2-1-2 石墨烯性質 5 2-1-3 石墨烯的製備方法 7 2-2 二氧化鈦介紹 10 2-2-1 二氧化鈦結構簡介 10 2-2-2 二氧化鈦製備簡介 12 2-3 釩酸銀介紹 15 2-3-1 釩酸銀簡介 15 2-3-2 釩酸銀製備 16 2-4 半導體光觸媒 17 2-5 影響光催化效能因素簡評 19 2-5-1 光源能量 19 2-5-2 尺寸效應 20 2-5-3 光觸媒改質 21 第三章、實驗 29 3.1 藥品 29 3.2實驗流程 30 3.3 實驗步驟 31 3.3.1合成TiO2粉體 31 3.3.2 合成TiO2/Graphene(Gp)粉體 31 3.3.3 合成TiO2/Ag3VO4/Gp粉體 32 3.3.4合成TiO2/Ag3VO4/CNT粉體 32 3.3.5 TiO2/Ag3VO4 /Gp/聚氨酯(PU)紡絲液配置 33 3.3.6 製備TiO2/Ag3VO4 /Gp/聚氨酯(PU)靜電紡絲纖維 33 3.3.7 光觸媒的光催化效果比較 34 3.3.8 光觸媒粉體抗菌實驗比較 35 3.3.9光觸媒/電紡纖維膜抑菌圈實驗比較 36 3.4 實驗設備與測試儀器 37 3.4.1 實驗設備 37 3.4.2 分析儀器 37 第四章、實驗結果與討論 40 4.1 TiO2/Ag3VO4/Gp複合光觸媒物、化性鑑定 40 4.1.1 X-ray Diffraction (XRD) 40 4.1.2 X-ray Photoelectron Spectroscopy (XPS) 42 4.1.3 Raman spectroscopy 47 4.1.4 UV-vis Spectroscopy 48 4.1.5 Morphology analysis 51 4.1.6 BET analysis 54 4.1.7 Photoluminescence analysis 55 4.2 光觸媒光催化效能評估 57 4.2.1 TiO2/Ag3VO4複合光催化效能比較 57 4.2.2 奈米碳管、石墨烯複合TiO2/Ag3VO4光催化效能比較 61 4.2.3 TiO2/Ag3VO4/Gp光觸媒對各染料降解效能 64 4.2.4 光觸媒重複降解效率測試與文獻比較 72 4.2.5 TiO2/Ag3VO4/Gp光觸媒光催化機制 75 4.3 抗菌實驗 77 4.4 靜電紡絲法製備TiO2/Ag3VO4/Gp光觸媒複合高分子纖維膜 80 五、結論 84 參考文獻 86

    [1] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 125 (2012) 331-349.
    [2] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49 (2011) 741-772.
    [3] A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63 (2008) 515-582.
    [4] O. Carp, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32 (2004) 33-177.
    [5] H.W. Kroto, A. Allaf, S. Balm, C60: Buckminsterfullerene, Chemical Reviews, 91 (1991) 1213-1235.
    [6] S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991) 56-58.
    [7] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
    [8] C.L. Kane, Materials science: erasing electron mass, Nature, 438 (2005) 168-170.
    [9] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314.
    [10] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, The Journal of Physical Chemistry B, 108 (2004) 19912-19916.
    [11] M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature nanotechnology, 4 (2009) 30-33.
    [12] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology, 3 (2008) 563-568.
    [13] V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, E. Gioffredi, G. Malucelli, S. Marceddu, M. Sechi, V. Sanna, A. Mariani, Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization, Journal of Materials Chemistry, 21 (2011) 8727.
    [14] K. Ojha, O. Anjaneyulu, A.K. Ganguli, Graphene-based hybrid materials: synthetic approaches and properties, Current Science, 107 (2014) 397.
    [15] Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: an important environmental engineering material, Journal of environmental sciences, 26 (2014) 2139-2177.
    [16] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, 16 (2001) 3331-3334.
    [17] K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity, New J. Chem., 35 (2011) 353-359.
    [18] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials, 53 (2007) 117-166.
    [19] V. Cloet, A. Raw, K.R. Poeppelmeier, G. Trimarchi, H. Peng, J. Im, A.J. Freeman, N.H. Perry, T.O. Mason, A. Zakutayev, P.F. Ndione, D.S. Ginley, J.D. Perkins, Structural, Optical, and Transport Properties of α- and β-Ag3VO4, Chemistry of Materials, 24 (2012) 3346-3354.
    [20] R.E. Dinnebier, A. Kowalevsky, H. Reichert, M. Jansen, Polymorphism of Ag3VO4, Zeitschrift für Kristallographie, 222 (2007).
    [21] S.-Z. Wu, K. Li, W.-D. Zhang, On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity, Applied Surface Science, 324 (2015) 324-331.
    [22] R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates, Physical Chemistry Chemical Physics, 5 (2003) 3061.
    [23] Q. Zhu, W.-S. Wang, L. Lin, G.-Q. Gao, H.-L. Guo, H. Du, A.-W. Xu, Facile Synthesis of the Novel Ag3VO4/AgBr/Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability, The Journal of Physical Chemistry C, 117 (2013) 5894-5900.
    [24] T. Zhu, Y. Song, H. Ji, Y. Xu, Y. Song, J. Xia, S. Yin, Y. Li, H. Xu, Q. Zhang, H. Li, Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation, Chemical Engineering Journal, 271 (2015) 96-105.
    [25] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Advances, 4 (2014) 37003.
    [26] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society reviews, 38 (2009) 253-278.
    [27] N. Serpone, Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts, The Journal of Physical Chemistry B, 110 (2006) 24287-24293.
    [28] Y. Liu, X. Liu, D. Lu, P. Fang, R. Xiong, J. Wei, C. Pan, Carbon deposited TiO2-based nanosheets with enhanced adsorption ability and visible light photocatalytic activity, Journal of Molecular Catalysis A: Chemical, 392 (2014) 208-215.
    [29] G. Wang, Y. Ren, G.J. Zhou, J.P. Wang, H.F. Cheng, Z.Y. Wang, J. Zhan, B.B. Huang, M.H. Jiang, Synthesis of highly efficient visible light Ag@Ag3VO4 plasmonic photocatalysts, Surface and Coatings Technology, 228 (2013) S283-S286.
    [30] S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, S. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater, Applied Catalysis B: Environmental, 168-169 (2015) 448-457.
    [31] J. Wang, H. Ruan, W. Li, D. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation, The Journal of Physical Chemistry C, 116 (2012) 13935-13943.
    [32] C. Wang, X. Zhang, Y. Liu, Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction, Applied Surface Science, 358 (2015) 28-45.
    [33] K. Wangkawong, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, CoTiO3/Ag3VO4 composite: A study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue, Journal of colloid and interface science, 454 (2015) 210-215.
    [34] M. Ghavami, M.Z. Kassaee, R. Mohammadi, M. Koohi, B.N. Haerizadeh, Polyaniline nanotubes coated with TiO2&γ-Fe2O3@graphene oxide as a novel and effective visible light photocatalyst for removal of rhodamine B from water, Solid State Sciences, 38 (2014) 143-149.
    [35] L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites, Journal of Alloys and Compounds, 549 (2013) 105-113.
    [36] O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, The Journal of Physical Chemistry C, 113 (2009) 20214-20220.
    [37] K. Palanivelu, J.-S. Im, Y.-S. Lee, Carbon Doping of TiO2 for Visible Light Photo Catalysis-A Review, Carbon letters, 8 (2007) 214-224.
    [38] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'Homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano letters, 8 (2008) 36-41.
    [39] W.D. Chemelewski, O. Mabayoje, C.B. Mullins, SILAR Growth of Ag3VO4 and Characterization for Photoelectrochemical Water Oxidation, The Journal of Physical Chemistry C, 119 (2015) 26803-26808.
    [40] X. Mei, X. Meng, F. Wu, Hydrothermal method for the production of reduced graphene oxide, Physica E: Low-dimensional Systems and Nanostructures, 68 (2015) 81-86.
    [41] J. Wang, P. Wang, Y. Cao, J. Chen, W. Li, Y. Shao, Y. Zheng, D. Li, A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response, Applied Catalysis B: Environmental, 136-137 (2013) 94-102.
    [42] M. Yan, Y. Wu, Y. Yan, X. Yan, F. Zhu, Y. Hua, W. Shi, Synthesis and Characterization of Novel BiVO4/Ag3VO4 Heterojunction with Enhanced Visible-Light-Driven Photocatalytic Degradation of Dyes, ACS Sustainable Chemistry & Engineering, 4 (2016) 757-766.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE