簡易檢索 / 詳目顯示

研究生: 陳玟伶
Wen-Ling Chen
論文名稱: 具抗菌性及生物相容性之 3D 列印光固化樹脂
3D Printed Photo-curable Resins with Sustaining Antibacterial Ability
指導教授: 何明樺
Ming-Hua Ho
口試委員: 蔡協致
Hsieh-Chih Tsai
糜福龍
Fwu-Long Mi
呂憲宗
Xiang-Zong Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 149
中文關鍵詞: 抗菌性生物相容性光固化樹脂銀離子十六烷基氯化砒啶低分子量幾丁聚醣
外文關鍵詞: antibacterial, biocompatibility, photo-resin, silver ion, cetylpyridinium chloride, low molecular chitosan
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們以不同抗菌因子搭配光固化複合高分子,建立可用於3D列印程序之光固化樹脂配方,所使用的抗菌因子包括銀離子、十六烷基氯化砒啶(CPC,Cetylpyridinium chloride)和低分子量幾丁聚醣(CS)添加到我們的光敏樹脂中,並對抗菌劑添加樹脂的列印性質和抗菌效果進行分析。
    實踐結果顯示添加銀離子、CPC和CS的光固化樹脂皆具有抗菌性,結果表明,銀離子及CPC對大腸桿菌及金黃色葡萄球菌的抑制比例到達99.99%,CS的抑菌比例則約為50%。光固化產物的收縮率在2.2-12%之間,這可能是由於密度測量中抗菌劑的釋放引起的。抗菌劑的損失導致樹脂收縮,因此收縮率隨銀離子、CPC和CS的含量和親水性而增加。添加抗菌劑會降低轉化率,這是因為所有這些添加劑都不具有光反應性,並且會在光樹脂的固化過程中產生空間位阻。含抗菌劑的樹脂的最終轉化率CS 5%為98.6%、CS10%為93.2%;CPC 5%為98.7、 CPC 10%為95.2%;銀離子 1%為87.5%、銀離子1.45%為84.5%,高轉化率代表印刷效率和產品穩定性是可以接受的。根據ISO-10993進行的細胞培養結果表明這些光敏樹脂具有良好的生物相容性,其中CS的生物相容性較銀離子和CPC高,這是因為CS屬於大分子的抗菌劑,光固化樹脂中較不易從中釋放。
    本研究所開發的抗菌型光固化樹脂,具有良好的抗菌性,穩定性及生物相容性,發展作為3D列印抗菌光固化樹脂。


    In this research, the formulation of anti-bacterial photo-resin was established by the addition of silver ions, cetylpyridinium chloride (CPC) and low-molecular-weight chitosan (CS). The printing resolution and anti-bacterial effects of photo-resin were then analyzed.
    The experimental results indicated that the bacterial colonies were reduced to 0.001 to 1% of the original colonies by using anti-bacterial photo-resin with silver ions and CPC. The CS additives suppressed the bacterial growth to 50%. The shrinkage rate of photo-cured products was ranged from 2.2 to 12%, which was possibly caused by the release of anti-bacterial agents in density measurement. The shrinkage rate increased with the amount and hydrophilicity of silver ion, CPC and CS. On the other hand, the conversion rate decreased due to the addition of anti-bacterial agents. It was because all these additives were not photo-reactive and would produce steric hindrances in the curing of photo-resin. However, the final conversion rates of antibacterial resin were ranged from 84% to 99%, indicating the acceptable printing efficiency and product stability. The results from cell culture supported that the antibacterial photo-resin was biocompatible.
    The anti-bacterial photo-resin developed in this research showed good printing resolution, mechanical strength and biocompatibility, which was promising in biomedical applications of 3D printing.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 X 表目錄 XIX 專有名詞及縮寫 XX 第一章 緒論 1 第二章 文獻回顧 3 2.1積層製造簡介 3 2.1.1抗菌型樹脂於生醫領域應用優勢 3 2.1.2積層製造的種類 4 2.1.3積層製造材料簡介 7 2.2抗菌物質及原理 8 2.2.1 抗菌樹脂常見的抗菌物質 9 2.2.2抗菌物質的特徵 12 2.3抗菌樹脂系統及抗菌機制 14 2.3.1無機抗菌劑-銀離子 14 2.3.3有機抗菌劑-氯化十六烷基吡啶 (CPC) 15 2.3.3天然抗菌劑-低分子量幾丁聚醣 16 2.4抗菌樹脂的材料發展 17 2.4.1用於 FDM 的抗菌聚合物 17 2.4.2用於光固化列印的抗菌樹脂 18 第三章 實驗材料與方法 21 3.1實驗藥品 21 3.2實驗儀器 23 3.3實驗步驟 26 3.3.1光固化樹脂配方系統 26 3.3.2抗菌劑光固化樹脂的改質 27 3.4複合材料鑑定與性質檢測 28 3.4.1傅立葉轉換紅外線光譜儀(FTIR)分析 28 3.4.2黏度測試 29 3.4.5多功能固體密度測量儀 29 3.5抗菌劑釋放檢測 31 3.5.1銀離子釋放檢測(ICP) 31 3.5.2 CPC及CS釋放檢測(UV/Visible Spectrometer) 31 3.6抗菌檢測 32 3.6.1抗菌光固化材料試片製作 32 3.6.2抑菌環寬測試法 33 3.6.3濁度法 34 3.6.4 CFU(Colony Forming Unit)法 34 3.7體外細胞測試 36 3.7.1光固化材料試片製作 36 3.7.2生物相容性檢測方式與操作 37 3.7.3細胞來源 38 3.7.4細胞培養 39 3.7.5細胞冷凍保存 40 3.7.6細胞解凍及培養 41 3.7.7細胞計數 42 3.7.8粒線體活性測試 44 第四章 實驗結果與討論 47 4.1抗菌樹脂的穩定性及黏度分析 47 4.1.1抗菌劑添加對樹脂流變性之影響 47 4.2傅立葉轉換紅外光譜儀轉化率分析 52 4.3材料的體積收縮率與列印精準度分析 60 4.3.1抗菌劑比例體積收縮率的相關性 60 4.4抗菌光固化樹脂材料親疏水性分析 63 4.4.1不同抗菌劑比例對親疏水性影響 63 4.5抗菌劑釋放分析 67 4.5.1 銀離子釋放分析 (ICP) 67 4.5.2 CPC釋放分析 (UV) 70 4.5.3 CS釋放分析 (UV) 72 4.6大腸桿菌及金黃色葡萄球菌抗菌表現 74 4.6.1 CFU測試 74 4.1.2濁度法測試 97 4.7材料生物性質檢測 103 4.7.1樹脂/CPC對生物相容性之影響 103 4.7.2樹脂/銀離子對生物相容性之影響 105 4.7.3樹脂/CS對生物相容性之影響 107 第五章 結果與討論 109 參考文獻 110

    1. Gibson, I., D. Rosen, and B. Stucker, “Introduction and Basic Principles in Additive Manufacturing Technologies” Springer New York;2015:1-18.
    2. Campbell, T., and O.S. Ivanova, “Additive Manufacturing as A Disruptive Technology: Implications of Three-Dimentional Printing” Technology and innovation ; 2013; 15: 67-79.
    3. McMenamin, P.G., M.R. Quayle, C.R. McHenry, and J.W. Adams, “The Production of Anatomical Teaching Resources Using Three-Dimensional (3D) Printing Technology” Anat. Sci. Educ.; 2014; 7: 479-486.
    4. Hung, C.C., Y.T. Li, Y.C. Chou, J.E. Chen, C.C. Wu, H.C. Shen, and T.T. Yeh, “Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture” International orthopaedics; 2019; 43: 425-431.
    5. Roseti, L., V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, and B. Grigolo, “Scaffolds for Bone Tissue Engineering: State of the art and new perspectives” Mater. Sci. Eng. C-Mater. Biol. Appl.; 2017; 78: 1246-1262.
    6. Kenawy, E. R., S.D. Worley, and R. Broughton, “ The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review”Biomacromolecules; 2007; 8(5): 1359-1384.
    7. Murphy, S.V. and A. Atala, “3D bioprinting of tissues and organs. ” Nature Biotechnology; 2014; 32(8): 773-785.
    8. Zhu F., Skommer J., Macdonald N.P., Friedrich T., Kaslin J., Wlodkowic D. “Three-dimensional printed millifluidic devices for zebrafish embryo tests. ” Biomicrofluidics; 2015; 9(4): 046502-046502.
    9. Ligon, S.C., R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing” Chem. Rev.; 2017; 117: 10212-10290.
    10. Lee, J.Y., J. An, and C.K. Chua, “Fundamentals and applications of 3D printing for novel materials” Appl. Mater. Today; 2017; 7: 120-133.
    11. Turner, B.N. and S.A. Gold, “A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness” Rapid Prototyping J.; 2015; 21: 250-261.
    12. Leben, L.M., J.J. Schwartz, A.J. Boydston, R.J. D'Mello, and A.M. Waas, “Optimized heterogeneous plates with holes using 3D printing via vat photo-polymerization” Addit. Manuf.; 2018; 24: 210-216.
    13. Gaynor, A.T., N.A. Meisel, C.B. Williams, and J.K. Guest, “Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing” J. Manuf. Sci. Eng.-Trans. ASME; 2014; 136: 10-10.
    14. Hong, D.H., D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, and P.N. Kumta, “Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys” Acta Biomater.; 2016; 45: 375-386.
    15. Obikawa, T., M. Yoshino, and J. Shinozuka, “Sheet steel lamination for rapid manufacturing” J. Mater. Process. Technol.; 1999; 90: 171-176.
    16. Khairallah, S.A., A.T. Anderson, A. Rubenchik, and W.E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones” Acta Mater.; 2016; 108: 36-45.
    17. Carroll, B.E., T.A. Palmer, and A.M. Beese, “Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing” Acta Mater.; 2015; 87: 309-320.
    18. Gross, B.C., J.L. Erkal, S.Y. Lockwood, C.P. Chen, and D.M. Spence, “Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences” Anal. Chem.; 2014; 86: 3240-3253.
    19. Chan, V., P. Zorlutuna, J.H. Jeong, H. Kong, and R. Bashir, “Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation” Lab on a Chip; 2010; 10: 2062-2070.
    20. Cooke, M.N., J.P. Fisher, D. Dean, C. Rimnac, and A.G. Mikos, “Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth” J Biomed Mater Res Part B Appl Biomater; 2003; 64B: 65-69.
    21. Melchels, F.P.W., J. Feijen, and D.W. Grijpma, “A review on stereolithography and its applications in biomedical engineering” Biomaterials; 2010; 31: 6121-6130.
    22. Bhattacharjee, N., A. Urrios, S. Kanga, and A. Folch, “The upcoming 3D-printing revolution in microfluidics” Lab on a Chip; 2016; 16: 1720-1742.
    23. Ge, L.S., L.T. Dong, D. Wang, Q. Ge, and G.Y. Gu, “A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators” Sens. Actuator A-Phys.; 2018; 273: 285-292.
    24. Athanasiou, K.A., J.P. Schmitz, and C.M. Agrawal, “The effects of porosity on in vitro degradation of polylactic acid polyglycolic acid implants used in repair of articular cartilage” Tissue Eng.; 1998; 4: 53-63.
    25. Anderson, J.M. and M.S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres” Adv. Drug Deliv. Rev.; 2012; 64: 72-82.
    26. Lam, C.X.F., D.W. Hutmacher, J.T. Schantz, M.A. Woodruff, and S.H. Teoh, “Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo” J. Biomed. Mater. Res. Part A; 2009; 90A: 906-919.
    27. Benfarhi, S., C. Decker, L. Keller, and K. Zahouily, “Synthesis of clay nanocomposite materials by light-induced crosslinking polymerization” Eur. Polym. J.; 2004; 40: 493-501.
    28. Kannurpatti, A.R., J.W. Anseth, and C.N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates” Polymer; 1998; 39: 2507-2513.
    29. Nguyen, L.H., M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications. ” Advanced Functional Materials; 2005; 15(2): 209-216.
    30. Weidenmaier, C. and A. Peschel, “Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. ” Nature Reviews Microbiology; 2008; 6(4): 276-287.
    31. Salton, M.R.J., “Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. ” Biochimica et Biophysica Acta; 1953; 10: 512-523.
    32. Gelman, M.A., Weisblum, B., Lynn, D.M., Gellman, S.H., “Biocidal Activity of Polystyrenes That Are Cationic by Virtue of Protonation. ” Organic Letters; 2004; 6(4): 557-560.
    33. Xue, Y., H. Xiao, and Y. Zhang, “Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. ” International journal of molecular sciences; 2015; 16(2): 3626-3655.
    34. Wang, X. and C. Wang, “The antibacterial finish of cotton via sols containing quaternary ammonium salts. ” Journal of Sol-Gel Science and Technology; 2009; 50: 15-21.
    35. Obłąk, E., Piecuch, A., Guz-Regner K., Dworniczek E., “Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiology Letters” ; 2014; 350(2): 190-198.
    36. Brycki, B., Koziróg, A., Kowalczyk, I., Pospieszny, T., Materna, P., and Marciniak, J., “Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacers. ”Molecules (Basel, Switzerland) ; 2017; 22(11): 1810.
    37. Ornelas-Megiatto, C., P.R. Wich, and J.M. Fréchet, “Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. ” Journal of the American Chemical Society; 2012; 134(4): 1902-1905.
    38. Hemp, S. T., Smith, A. E., Bryson, J. M., Allen, M. H., Jr, and Long, T. E., “Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery.” Biomacromolecules; 2012; 13(8): 2439-2445.
    39. Xue, Y., Pan, Y., Xiao, H., and Zhao, Y., “Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. ” Rsc Advances; 2014; 4(87): 46887-46895.
    40. Sun, Y. and G. Sun, “Novel Refreshable N-Halamine Polymeric Biocides:  N-Chlorination of Aromatic Polyamides. ” Industrial and Engineering Chemistry Research; 2004; 43(17): 5015-5020.
    41. Sun, Y., Chen, T. Y., Worley, S. D., and Sun, G., “Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives.” Journal of Polymer Science Part A: Polymer Chemistry; 2001; 39(18): 3073-3084.
    42. Hirayama, M., “The Antimicrobial Activity, Hydrophobicity and Toxicity of Sulfonium Compounds, and Their Relationship.” Biocontrol Science; 2011; 16(1): 23-31.
    43. Lowe, A., Deng, W., Smith Jr, D. W., & Balkus Jr, K. J., “Acrylonitrile-Based Nitric Oxide Releasing Melt-Spun Fibers for Enhanced Wound Healing.” Macromolecules; 2012; 45(15): 5894-5900.
    44. Sun, Y. and G. Sun, “Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides.” Industrial and engineering chemistry research ; 2004; 43(17): 5015-5020.
    45. Hui, F. and C. Debiemme-Chouvy, “Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. ” Biomacromolecules; 2013; 14(3): 585-601.
    46. Ward, M., Sanchez, M., Elasri, M. O., & Lowe, A. B., “Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. ” Journal of Applied Polymer Science; 2006; 101(2): 1036-1041.
    47. Mi, L., and S. Jiang, “Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. ” Angewandte Chemie International Edition; 2014; 53(7): 1746-1754.
    48. Cao, Z., Brault, N., Xue, H., Keefe, A., and Jiang, S., “Manipulating Sticky and Non-Sticky Properties in a Single Material.” Angewandte Chemie International Edition; 2011; 50(27): 6102-6104.
    49. Cao, Z., Mi, L., Mendiola, J., Ella‐Menye, J. R., Zhang, L., Xue, H., and Jiang, S., “Reversibly Switching the Function of a Surface between Attacking and Defending against Bacteria.” Angewandte Chemie International Edition; 2012; 51(11):. 2602-2605.
    50. Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., and Godwin, H. A., “Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver.” ACS nano;2014; 8(1): 374-386.
    51. Gibson, I., S. Best, and W. Bonfield, “ Chemical characterization of silicon‐substituted hydroxyapatite.” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials; 1999; 44(4): 422-428.
    52. Radovanović, Ž., Jokić, B., Veljović, D., Dimitrijević, S., Kojić, V., Petrović, R., & Janaćković, D., “Antimicrobial activity and biocompatibility of Ag+-and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+-and Cu2+-doped hydroxyapatite. ” Applied surface science; 2014; 307: 513-519.
    53. Sader, M.S., R.Z. LeGeros, and G.A. Soares, “Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. ” Journal of Materials Science: Materials in Medicine; 2009; 20(2): 521-527.
    54. Ito, A., Ojima, K., Naito, H., Ichinose, N., & Tateishi, T., “Preparation, solubility, and cytocompatibility of zinc‐releasing calcium phosphate ceramics. ” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials; 2000; 50(2): 178-183.
    55. Matsumoto, N., Sato, K., Yoshida, K., Hashimoto, K., and Toda, Y., “Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. ” Acta biomaterialia; 2009; 5(8): 3157-3164.
    56. Fan, Z., Liu, B., Wang, J., Zhang, S., Lin, Q., Gong, P., and Yang, S., “A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. ” Advanced Functional Materials; 2014; 24(25): 3933-3943.
    57. Steiner, H., Hultmark, D., Engström, Å., Bennich, H., & Boman, H. G., “Sequence and specificity of two antibacterial proteins involved in insect immunity. ” Nature; 1981; 292(5820): 246-248.
    58. Bera, A., Herbert, S., Jakob, A., Vollmer, W., & Götz, F., “Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O‐acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus.” Molecular microbiology; 2005; 55(3): 778-787.
    59. Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., & Köller, M., “Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells.” Acta biomaterialia; 2011; 7(1): 347-354.
    60. Fielding, G. A., Roy, M., Bandyopadhyay, A., and Bose, S., “Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. ” Acta biomaterialia; 2012; 8(8): 3144-3152.
    61. Hu, H., Zhang, W., Qiao, Y. Q., Jiang, X. Y., Liu, X., and Ding, C, “Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.” Acta biomaterialia;2012; 8(2):904-915.
    62. Sultan, S., Siqueira, G., Zimmermann, T., & Mathew, A. P., “3D printing of nano-cellulosic biomaterials for medical applications”. Current Opinion in Biomedical Engineering; 2017; 2: 29-34.
    63. Pattinson, S.W. and A.J. Hart, “Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. ” Advanced Materials Technologies; 2017; 2(4): 1600084.
    64. Gleeson, M. R., Kelly, J. V., Close, C. E., O'Neill, F. T., and Sheridan, J. T., “Effects of absorption and inhibition during grating formation in photopolymer materials.” Journal of the Optical Society of America B; 2006; 23(10): 2079-2088.
    65. Tran, P., Ngo, T. D., Ghazlan, A., and Hui, D., “Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. ” Composites Part B: Engineering; 2017; 108: 210-223.
    66. Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R., & Russell, A. D., “Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions.” Letters in applied microbiology; 1997; 25(4):. 279-283.
    67. Brown, T. and B. TA, “THE EFFECTS OF SILVER NITRATE ON THE GROWTH AND ULTRASTRUCTURE OF THE YEAST CRYPTOCACCUS ALBIDUS”; 1976.
    68. Richards, R., H. Odelola, and B. Anderson, “Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. ” Microbios; 1984; 39(157-158): 151-157.
    69. Yamamoto, K., Ohashi, S., Aono, M., Kokubo, T., Yamada, I., and Yamauchi, J., “Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci.” Dental Materials; 1996; 12(4): 227-229.
    70. Berger, T. J., Spadaro, J. A., Chapin, S. E., and Becker, R. O., “Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. ” Antimicrobial agents and chemotherapy;1976; 9(2): 357-358.
    71. Erdem, U., and Turkoz, M. B., “Silver release of Ag (I) doped hydroxyapatite: In vitro study.” Microscopy Research and Technique; 2019; 82(7): 961-971.
    72. Jones, J. R., Ehrenfried, L. M., Saravanapavan, P., and Hench, L L., “Controlling ion release from bioactive glass foam scaffolds with antibacterial properties.” Journal of Materials Science: Materials in Medicine; 2006; 17(11): 989-996.
    73. Witt, J., Ramji, N., Gibb, R., Dunavent, J., Flood, J., & Barnes, J., “Antibacterial and antiplaque effects of a novel, alcohol-free oral rinse with cetylpyridinium chloride. ” The journal of contemporary dental practice; 2005; 6 1: 1-9.
    74. Steinberg, D., M. Moldovan, and D. Molukandov, “Testing a degradable topical varnish of cetylpyridinium chloride in an experimental dental biofilm model. ”Journal of Antimicrobial Chemotherapy; 2001; 48(2): 241-243.
    75. Ehara, A., Torii, M., Imazato, S., & Ebisu, S., “Antibacterial Activities and Release Kinetics of a Newly Developed Recoverable Controlled Agent-release System. ” Journal of Dental Research; 2000; 79(3): 824-828.
    76. Imazato, S., Ebi, N., Takahashi, Y., Kaneko, T., Ebisu, S., & Russell, R. R., “Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. ” Biomaterials; 2003; 24(20): 3605-3609.
    77. Namba, N., Yoshida, Y., Nagaoka, N., Takashima, S., Matsuura-Yoshimoto, K., Maeda, H., and Takashiba, S., “Antibacterial effect of bactericide immobilized in resin matrix. ” Dental Materials; 2009; 25(4): 424-430.
    78. Yalpani, M., F. Johnson, and L. Robinson, “Antimicrobial activity of some chitosan derivatives. ” Advances in chitin and chitosan; 1992: 543-548.
    79. Prescott, L. and J. Harley, “Laboratory Exercise in Microbiology. ” McGraw-Hill Companies New York; 2002.
    80. Water, J. J., Bohr, A., Boetker, J., Aho, J., Sandler, N., Nielsen, H. M., & Rantanen, J., “Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. ” Journal of pharmaceutical sciences; 2015; 104(3): 1099-1107.
    81. Sandler, N., Salmela, I., Fallarero, A., Rosling, A., Khajeheian, M., Kolakovic, R., and Vuorela, P., “Towards fabrication of 3D printed medical devices to prevent biofilm formation. ” International Journal of Pharmaceutics; 2014; 459(1): 62-64.
    82. Mills, D. K., Jammalamadaka, U., Tappa, K., and Weisman, J., “Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. ” Bioactive Materials; 2018; 3(2):. 157-166.
    83. Mai, H. N., Hyun, D. C., Park, J. H., Kim, D. Y., Lee, S. M., and Lee, D. H., “Antibacterial Drug-Release Polydimethylsiloxane Coating for 3D-Printing Dental Polymer: Surface Alterations and Antimicrobial Effects. ” Pharmaceuticals; 2020; 13(10): 304.
    84. Totu, E. E., Nechifor, A. C., Nechifor, G., Aboul-Enein, H. Y., & Cristache, C. M., “Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing − the fututre in dental care for elderly edentulous patients? ” Journal of Dentistry; 2017; 59: 68-77.
    85. Azuma, A., N. Akiba, and S. Minakuchi, “Hydrophilic surface modification of acrylic denture base material by silica coating and its influence on Candida albicans adherence. ” Journal of medical and dental sciences; 2012; 59(1): 1-7.
    86. Fukunishi, M., Inoue, Y., Morisaki, H., Kuwata, H., Ishihara, K., Baba, K., and Baba, K., “A Polymethyl Methacrylate-Based Acrylic Dental Resin Surface Bound with a Photoreactive Polymer Inhibits Accumulation of Bacterial Plaque. ” International Journal of Prosthodontics; 2017; 30(6).
    87. Rokaya, D., Srimaneepong, V., Sapkota, J., Qin, J., Siraleartmukul, K., and Siriwongrungson, V., “Polymeric materials and films in dentistry: An overview. ” Journal of advanced research; 2018; 14: 25-34.
    88. Yue, J., Zhao, P., Gerasimov, J. Y., van de Lagemaat, M., Grotenhuis, A., Rustema‐Abbing, M., and Ren, Y., “3D-Printable Antimicrobial Composite Resins. ” Advanced Functional Materials; 2015; 25(43): 6756-6767.
    89. Cloutier, M., D. “Mantovani, and F. Rosei, Antibacterial coatings: challenges, perspectives, and opportunities.” Trends in biotechnology; 2015; 33(11): 637-652.
    90. Sa, L., Kaiwu, L., Shenggui, C., Junzhong, Y., Yongguang, J., Lin, W., and Li, R., “3D printing dental composite resins with sustaining antibacterial ability”. Journal of Materials Science; 2019; 54(4): 3309-3318.
    91. Mesa-Múnera, E., J. Ramírez-Salazar, P. Boulanger, and J. Branch, “Inverse-FEM Characterization of a Brain Tissue Phantom to Simulate Compression and Indentation” Ingeniería y Ciencia; 2012; 8: 11-36.
    92. Kaewpirom, S. and D. Kunwong, “Curing behavior and cured film performance of easy-to-clean UV-curable coatings based on hybrid urethane acrylate oligomers” Journal of Polymer Research; 2012; 19-20.
    93. Le Fer, G., Y. Luo, and M.L. Becker, “Poly (propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. ” Polymer Chemistry; 2019; 10(34): 4655-4664.
    94. Krainer, S., C. Smit, and U. Hirn, “The effect of viscosity and surface tension on inkjet printed picoliter dots. ” RSC advances; 2019; 9(54): 31708-31719.
    95. Mustatea, G., Calinescu, I., Diacon, A. U. R. E. L., & Balan, L., “Photoinduced Synthesis of Silver/polymer Nanocomposites. ” MATERIALE PLASTICE; 2014; 51: 17-21.
    96. Kim, W.S., Y.-C. Jeong, and J.-K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage. ” Applied Physics Letters; 2005; 87(1): 012106.
    97. Bertlein, S., Brown, G., Lim, K. S., Jungst, T., Boeck, T., Blunk, T., ... & Groll, J., “Thiol–ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. ” Advanced materials; 2017; 29(44): 1703404.
    98. Bowman, C.N. and K.S. Anseth. “Microstructural evolution in polymerizations of tetrafunctional monomers. ” in Macromolecular Symposia; 1995; Wiley Online Library.
    99. Abenojar, J., Torregrosa-Coque, R., Martínez, M. A., & Martín-Martínez, J. M., “Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. ” Surface and Coatings Technology; 2009; 203(16): 2173-2180.
    100. Dickens, S.H. and B.H. Cho, “Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents. ” Dental Materials; 2005; 21(4):354-364.
    101. Ito, S., Hashimoto, M., Wadgaonkar, B., Svizero, N., Carvalho, R. M., Yiu, C., and Pashley, D. H., “Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. ” Biomaterials; 2005; 26(33): 6449-6459.
    102. Sideridou, I., V. Tserki, and G. “Papanastasiou, Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. ” Biomaterials; 2003; 24(4): 655-665.
    103. Jacobsen, T. and K.-J. Söderholm, “Some effects of water on dentin bonding. ” Dental Materials; 1995; 11(2): 132-136.
    104. Cadenaro, M., Breschi, L., Antoniolli, F., Navarra, C. O., Mazzoni, A., Tay, F. R., and Pashley, D. H., “Degree of conversion and permeability of dental adhesives. ” European journal of oral sciences; 2005; 113(6): 525-530.
    105. Cadenaro, M., Breschi, L., Antoniolli, F., Navarra, C. O., Mazzoni, A., Tay, F. R., and Pashley, D. H., “Degree of conversion of resin blends in relation to ethanol content and hydrophilicity. ” Dental Materials; 2008; 24(9): 1194-1200.
    106. Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H., “Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. ” Applied and environmental microbiology; 2008; 74(7): 2171-2178.
    107. Mao, X., Auer, D. L., Buchalla, W., Hiller, K. A., Maisch, T., Hellwig, E., and Cieplik, F., “Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. ” Antimicrobial agents and chemotherapy; 2020; 64(8): e00576-20.
    108. Gilbert, P. and L. “Moore, Cationic antiseptics: diversity of action under a common epithet. ” Journal of applied microbiology;2005; 99(4): 703-715.
    109. McDonnell, G. and A.D. Russell, “Antiseptics and disinfectants: activity, action, and resistance. ” Clinical microbiology reviews; 1999; 12(1): 147-179.
    110. McFarland, J., “The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. ” Journal of the American Medical Association;1907; 49(14): 1176-1178.

    無法下載圖示 全文公開日期 2031/09/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE