簡易檢索 / 詳目顯示

研究生: 李子安
Tzu-An Lee
論文名稱: 酸催化劑對噴霧乾燥法製備硼摻雜生物活性玻璃性質之研究
Investigation of acid catalysts on the spray dried Boron-doped bioactive glass microspheres
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: 生物活性玻璃生物活性生物相容性硼摻雜血管增生
外文關鍵詞: Bioactive glass, Bioactive, Cytotoxicity, Boron, Angiogenesis
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據研究顯示,生物活性玻璃比其他陶瓷材料可刺激更多的骨再生,並對於刺激骨母細胞的分化具有正向的影響。當生物活性玻璃植入體內後,可於表面沉積氫氧基磷灰石,並與原生骨骼產生鍵結,以加快修復受損骨骼與組織生長。此外,生物活性玻璃亦可透過摻雜功能性元素達到不同地治療效果,其中硼元素不僅可增加生物活性、機械性質及降解能力,還可以促進傷口癒合、釋放生長因子及細胞因子、增加 RNA 的合成,除此之外還能增加血管內皮生長因子(VEGF)、白血球介素6(IL-6)以及鹼性成纖維細胞生長因子(bFGF)的分泌、刺激血管的生成以加快傷口修復的速度。故本研究擬以硼元素作為摻雜之功能性元素,並添加不同的酸催化劑並觀察其影響。實驗結果顯示所有樣品均具有生物活性,且在摻雜濃度較高樣品中具有加快氫氧基磷灰石生成的能力。於生物相容性方面,各樣品於150mg/ml濃度下之萃取液均通過ISO10993-5規範並無細胞毒性,且細胞存活率與摻硼濃度成正比關係。


    Bioactive glass could stimulate more bone regeneration than other ceramic materials and has a positive effect on stimulating the differentiation of osteoblasts. After implanted into the human body, layers of hydroxyapatite could be formed on the surface and bond with the native bone to accelerate the repair of damaged bone and tissue growth. Additionally, the material itself can achieve different therapeutic effects through the doping of functional elements. Among the functional elements, Boron could not only increase bioactivity, mechanical properties, and degradation ability but also promote wound healing, release growth factors and cytokines, increase RNA synthesis and secretion of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and basic fibroblast growth factor (bFGF), thus stimulating vascular formation to help wound healing. Therefore, this study proposes using boron as the functional element for doping. Experimental results show that all specimens are bioactive and have the ability to accelerate hydroxyapatite generation in high doping concentrations. In terms of biocompatibility, all specimens passed ISO10993-5 regulations and showed no cytotoxicity in the extraction solution at 150mg/ml, with cell survival rates increasing proportionally with boron doping concentration.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第 1 章 研究介紹 1 1.1研究背景 1 1.2研究動機 2 第 2 章 文獻回顧 3 2.1組織工程 3 2.2生醫陶瓷 5 2.2.1 β-三鈣磷酸鹽 6 2.2.2氫氧基磷灰石 6 2.2.3生物活性玻璃 8 2.3生物活性玻璃 8 2.3.1生物活性生成機制 11 2.3.2生物活性玻璃製備方法 13 2.3.2.1傳統玻璃法 13 2.3.2.2溶膠-凝膠法 13 2.3.3.3噴霧熱裂解法 14 2.3.2.4噴霧乾燥法 15 2.4硼摻雜之生物活性玻璃 17 2.5體外生物測試 19 2.5.1生物活性 19 2.5.2生物相容性 21 第 3 章 實驗方法 24 3.1實驗流程及實驗設計 24 3.2實驗使用藥品及樣品製備 25 3.3樣品分析儀器介紹 27 3.3.1熱重分析儀(Thermogravimetric analyzer, TGA) 28 3.3.2 X光繞射分析儀(X-ray diffractometer, XRD) 28 3.3.3場發射雙束型聚焦離子束顯微鏡(Dual beam focused ion beam scanning electron microscope, FIB-SEM) 29 3.3.4傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 30 3.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 30 3.4生物活性試驗(Bioactive examination) 31 3.5體外細胞試驗(In vitro test) 32 3.5.1體外生物相容性試驗 (MTT assay) 32 3.5.2牛主動脈內皮細胞增殖試驗 (BAOEC cells proliferation test) 33 第 4 章 實驗結果 34 4.1 生物活性玻璃性質分析 34 4.1.1 熱重分析(TGA) 34 4.1.2 晶相分析(XRD) 35 4.1.3 形貌及粒徑分析(FIB-SEM) 36 4.1.4元素分析(EDS, Mapping) 39 4.1.5 官能基分析(FTIR) 41 4.1.6 材料表面定性分析(XPS) 42 4.2 生物活性分析 45 4.2.1 晶相分析(XRD) 45 4.2.2 官能基分析(FTIR) 47 4.2.3 形貌、元素分析(SEM, EDS) 48 4.3 體外細胞實驗 50 4.3.1 細胞相容性(MTT) 50 4.3.2 內皮細胞增殖試驗 51 第 5 章 實驗討論 52 5.1 硼摻雜量對於生物活性玻璃形貌之影響 52 5.2 硼摻雜量對於生物活性之影響 53 5.3 硼摻雜量對於培養MC3T3-E1細胞及BAOEC細胞之影響 53 5.4 硝酸及醋酸對於元素分布之影響 54 5.5 鹽酸、硝酸及醋酸對於生物活性玻璃性質之影響 55 第 6 章 結論 56 第 7 章 未來工作 57 第 8 章 參考文獻 58

    [1] https://www.ey.gov.tw/state/99B2E89521FC31E1/835a4dc2-2c2d-4ee0-9a36-a0629a5de9f0.
    [2] https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60.
    [3] 謝嘉娟, 陳旺全, 骨質疏鬆症中西醫治療進展, 中醫藥研究論叢, 21 (2018) 43-49.
    [4] N. Napoli, 世界骨鬆日專題演講-骨質疏鬆的負擔與處置.
    [5] https://web.hosp.ncku.edu.tw/nckm/download/annual_report/2019%E5%B9%B4%E5%A0%B1%E8%B3%87%E6%96%99(2018%E7%B5%B1%E8%A8%88%E8%B3%87%E6%96%99).pdf.
    [6] L.L. Hench, J.M. Polak, Third-generation biomedical materials, Science, 295 (2002) 1014-1017.
    [7] 李宣書, 淺談組織工程, 物理雙月刊, 24 (3), (2001).
    [8] M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta biomaterialia, 7 (2011) 2355-2373.
    [9] Y. Hu, S.R. Winn, I. Krajbich, J.O. Hollinger, Porous polymer scaffolds surface‐modified with arginine‐glycine‐aspartic acid enhance bone cell attachment and differentiation in vitro, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 64 (2003) 583-590.
    [10] L. Tan, X. Yu, P. Wan, K. Yang, Biodegradable materials for bone repairs: a review, Journal of Materials Science & Technology, 29 (2013) 503-513.
    [11] V. Challa, S. Mali, R. Misra, Reduced toxicity and superior cellular response of preosteoblasts to Ti‐6Al‐7Nb alloy and comparison with Ti‐6Al‐4V, Journal of Biomedical Materials Research Part A, 101 (2013) 2083-2089.
    [12] P. Ducheyne, K.E. Healy, The effect of plasma‐sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt‐chromium alloys, Journal of biomedical materials research, 22 (1988) 1137-1163.
    [13] D.G. Poitout, Biomechanics and biomaterials in orthopedics, (2004).
    [14] D. Shekhawat, A. Singh, M. Banerjee, T. Singh, A. Patnaik, Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties, Ceramics International, 47 (2021) 3013-3030.
    [15] R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications, Acta biomaterialia, 7 (2011) 3536-3546.
    [16] Y. Li, W. Weng, K.C. Tam, Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate, Acta Biomaterialia, 3 (2007) 251-254.
    [17] M. Bohner, B.L.G. Santoni, N. Döbelin, β-tricalcium phosphate for bone substitution: Synthesis and properties, Acta biomaterialia, 113 (2020) 23-41.
    [18] P. Arokiasamy, M.M.A.B. Abdullah, S.Z. Abd Rahim, S. Luhar, A.V. Sandu, N.H. Jamil, M. Nabiałek, Synthesis methods of hydroxyapatite from natural sources: A review, Ceramics International, (2022).
    [19] T. Laonapakul, R. Sutthi, P. Chaikool, S. Talangkun, A. Boonma, P. Chindaprasirt, Calcium phosphate powders synthesized from CaCO3 and CaO of natural origin using mechanical activation in different media combined with solid-state interaction, Materials Science and Engineering: C, 118 (2021) 111333.
    [20] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta biomaterialia, 9 (2013) 7591-7621.
    [21] A. Yelten-Yilmaz, S. Yilmaz, Wet chemical precipitation synthesis of hydroxyapatite (HA) powders, Ceramics International, 44 (2018) 9703-9710.
    [22] P. Deb, A.B. Deoghare, Effect of acid, alkali and alkali–acid treatment on physicochemical and bioactive properties of hydroxyapatite derived from catla catla fish scales, Arabian Journal for Science and Engineering, 44 (2019) 7479-7490.
    [23] J.R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta biomaterialia, 23 (2015) S53-S82.
    [24] K.R. Rust, G.T. Singleton, J. Wilson, P.J. Antonelli, Bioglass middle ear prosthesis: long-term results, The American journal of otology, 17 (1996) 371-374.
    [25] H.R. Stanley, M.B. Hall, A.E. Clark, C.J. King III, L.L. Hench, J.J. Berte, Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation, International journal of oral & maxillofacial implants, 12 (1997).
    [26] D. Gillam, J. Tang, N. Mordan, H. Newman, The effects of a novel Bioglass® dentifrice on dentine sensitivity: a scanning electron microscopy investigation, Journal of Oral Rehabilitation, 29 (2002) 305-313.
    [27] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
    [28] G. Kaur, O.P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: their structure, properties, fabrication and apatite formation, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 102 (2014) 254-274.
    [29] M. Brink, The influence of alkali and alkaline earths on the working range for bioactive glasses, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 36 (1997) 109-117.
    [30] Q. Fu, M.N. Rahaman, H. Fu, X. Liu, Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation, Journal of biomedical materials research part A, 95 (2010) 164-171.
    [31] A. Yao, D. Wang, W. Huang, Q. Fu, M.N. Rahaman, D.E. Day, In vitro bioactive characteristics of borate‐based glasses with controllable degradation behavior, Journal of the American Ceramic Society, 90 (2007) 303-306.
    [32] W. Huang, D.E. Day, K. Kittiratanapiboon, M.N. Rahaman, Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, Journal of Materials Science: Materials in Medicine, 17 (2006) 583-596.
    [33] H. Fu, Q. Fu, N. Zhou, W. Huang, M.N. Rahaman, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method, Materials Science and Engineering: C, 29 (2009) 2275-2281.
    [34] X. Yang, L. Zhang, X. Chen, X. Sun, G. Yang, X. Guo, H. Yang, C. Gao, Z. Gou, Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics, Journal of non-crystalline solids, 358 (2012) 1171-1179.
    [35] B. Bunker, G. Arnold, J.A. Wilder, Phosphate glass dissolution in aqueous solutions, Journal of Non-Crystalline Solids, 64 (1984) 291-316.
    [36] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, Journal of Materials Chemistry, 19 (2009) 690-701.
    [37] E.A. Abou Neel, T. Mizoguchi, M. Ito, M. Bitar, V. Salih, J.C. Knowles, In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses, Biomaterials, 28 (2007) 2967-2977.
    [38] L. Jeans, T. Gilchrist, D. Healy, Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: a comparison with microsurgical epineurial repair, Journal of plastic, reconstructive & aesthetic surgery, 60 (2007) 1302-1308.
    [39] L.L. Hench, Genetic design of bioactive glass, Journal of the European Ceramic Society, 29 (2009) 1257-1265.
    [40] I.A. Silver, J. Deas, M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials, 22 (2001) 175-185.
    [41] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32 (2011) 2757-2774.
    [42] J. Crush, A. Hussain, K. Seah, W.S. Khan, Bioactive glass: methods for assessing angiogenesis and osteogenesis, Frontiers in Cell and Developmental Biology, (2021) 1523.
    [43] P. Ducheyne, Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function, Biomaterials, 20 (1999) 2287-2303.
    [44] L.-C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials, 3 (2010) 3867-3910.
    [45] L.L. Hench, An introduction to bioceramics, World scientific1993.
    [46] M.R. Filgueiras, G. La Torre, L.L. Hench, Solution effects on the surface reactions of a bioactive glass, Journal of biomedical materials research, 27 (1993) 445-453.
    [47] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
    [48] J. Leng, Z. Wang, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion, Chemical Society Reviews, 48 (2019) 3015-3072.
    [49] S.-J. Shih, Y.-J. Chou, I.-C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-8.
    [50] S. Percy, Improvement in drying and concentrating liquid substances by atomizing. 1872: United States Patents, (1872).
    [51] A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: An overview, Food research international, 40 (2007) 1107-1121.
    [52] D. Santos, A.C. Maurício, V. Sencadas, J.D. Santos, M.H. Fernandes, P.S. Gomes, Spray drying: an overview, Biomaterials-Physics and Chemistry-New Edition, (2018) 9-35.
    [53] D.A. Miller, M. Gil, Spray-drying technology, Formulating poorly water soluble drugs, Springer2012, pp. 363-442.
    [54] K. Warington, The effect of boric acid and borax on the broad bean and certain other plants, Annals of Botany, 37 (1923) 629-672.
    [55] R.F. Moseman, Chemical disposition of boron in animals and humans, Environmental health perspectives, 102 (1994) 113-117.
    [56] R.E. Newnham, Essentiality of boron for healthy bones and joints, Environmental health perspectives, 102 (1994) 83-85.
    [57] R.E. Chapin, W.W. Ku, M.A. Kenney, H. McCoy, The effects of dietary boric acid on bone strength in rats, Biological trace element research, 66 (1998) 395-399.
    [58] F.H. Nielsen, Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones [electronic resource], (1990).
    [59] T.A. Devirian, S.L. Volpe, The physiological effects of dietary boron, (2003).
    [60] R.M. Nzietchueng, B. Dousset, P. Franck, M. Benderdour, P. Nabet, K. Hess, Mechanisms implicated in the effects of boron on wound healing, Journal of trace elements in medicine and biology, 16 (2002) 239-244.
    [61] I. Uluisik, H.C. Karakaya, A. Koc, The importance of boron in biological systems, Journal of Trace Elements in Medicine and Biology, 45 (2018) 156-162.
    [62] M. Park, Q. Li, N. Shcheynikov, W. Zeng, S. Muallem, NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation, Molecular cell, 16 (2004) 331-341.
    [63] C. Garbers, H.M. Hermanns, F. Schaper, G. Müller-Newen, J. Grötzinger, S. Rose-John, J. Scheller, Plasticity and cross-talk of interleukin 6-type cytokines, Cytokine & growth factor reviews, 23 (2012) 85-97.
    [64] S. Kargozar, F. Baino, S. Hamzehlou, R.G. Hill, M. Mozafari, Bioactive glasses: sprouting angiogenesis in tissue engineering, Trends in biotechnology, 36 (2018) 430-444.
    [65] P. Balasubramanian, T. Buettner, V.M. Pacheco, A.R. Boccaccini, Boron-containing bioactive glasses in bone and soft tissue engineering, Journal of the European ceramic society, 38 (2018) 855-869.
    [66] M.W. Laschke, Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rücker, D. Junker, Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes, Tissue engineering, 12 (2006) 2093-2104.
    [67] W. Barranco, C. Eckhert, Cellular changes in boric acid-treated DU-145 prostate cancer cells, British journal of cancer, 94 (2006) 884-890.
    [68] E. Jablonská, D. Horkavcová, D. Rohanová, D.S. Brauer, A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration, Journal of Materials Chemistry B, 8 (2020) 10941-10953.
    [69] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
    [70] M. Jarcho, J.F. Kay, K.I. Gumaer, R.H. Doremus, H.P. Drobeck, Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface, Journal of Bioengineering, 1 (1977) 79-92.
    [71] B. Rejda, J. Peelen, K. de Groot, Tri-calcium phosphate as a bone substitute, Journal of bioengineering, 1 (1977) 93-97.
    [72] R. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J. LeGeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications, Journal of materials science: Materials in Medicine, 14 (2003) 201-209.
    [73] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, Journal of biomedical materials research, 24 (1990) 721-734.
    [74] T. Kokubo, S. Ito, Z. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Ca, P‐rich layer formed on high‐strength bioactive glass‐ceramic A‐W, Journal of biomedical materials research, 24 (1990) 331-343.
    [75] T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials, 12 (1991) 155-163.
    [76] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
    [77] S. Datta, T. Adarsh, P. Diwan, K. Annapurna, B. Kundu, K. Biswas, Effect of boron oxide addition on structural, thermal, in vitro bioactivity and antibacterial properties of bioactive glasses in the base S53P4 composition, Journal of Non-Crystalline Solids, 498 (2018) 204-215.
    [78] X.V. Bui, T.H. Dang, Bioactive glass 58S prepared using an innovation sol-gel process, Processing and application of ceramics, 13 (2019) 98-103.
    [79] Q.-Z. Chen, G.A. Thouas, Fabrication and characterization of sol–gel derived 45S5 Bioglass®–ceramic scaffolds, Acta biomaterialia, 7 (2011) 3616-3626.
    [80] O. Tsigkou, J.R. Jones, J.M. Polak, M.M. Stevens, Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements, Biomaterials, 30 (2009) 3542-3550.
    [81] G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, In vitro evaluation of cell/biomaterial interaction by MTT assay, Biomaterials, 14 (1993) 359-364.
    [82] A. Oki, B. Parveen, S. Hossain, S. Adeniji, H. Donahue, Preparation and in vitro bioactivity of zinc containing sol‐gel–derived bioglass materials, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 69 (2004) 216-221.
    [83] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceramics International, 38 (2012) 177-188.
    [84] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
    [85] K. Schuhladen, U. Pantulap, K. Engel, P. Jeleń, Z. Olejniczak, L. Hupa, M. Sitarz, A.R. Boccaccini, Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffolds, International Journal of Applied Glass Science, 12 (2021) 293-312.
    [86] X. Lu, J. Du, Effects of boron oxide on the structure, properties and bioactivities of bioactive glasses: A review, Journal of Non-Crystalline Solids: X, (2022) 100118.
    [87] M. Ren, X. Lu, L. Deng, P.-H. Kuo, J. Du, B 2 O 3/SiO 2 substitution effect on structure and properties of Na 2 O–CaO–SrO–P 2 O 5–SiO 2 bioactive glasses from molecular dynamics simulations, Physical Chemistry Chemical Physics, 20 (2018) 14090-14104.
    [88] S.J. Shih, W.L. Tzeng, R. Jatnika, C.J. Shih, K.B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015) 899-907.
    [89] S.-J. Shih, G. Li, D.J. Cockayne, K.B. Borisenko, Mechanism of dopant distribution: an example of nickel-doped ceria nanoparticles, Scripta Materialia, 61 (2009) 832-835.

    無法下載圖示 全文公開日期 2033/07/28 (校內網路)
    全文公開日期 2033/07/28 (校外網路)
    全文公開日期 2033/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE