簡易檢索 / 詳目顯示

研究生: 林俊明
Chun-ming Lin
論文名稱: 七自由度多餘軸機器人之位移分析及路徑規劃
Inverse Kinematics and Trajectory Planning of 7-DOF Redundant Manipulators
指導教授: 蔡高岳
Kao-yueh Tsai
口試委員: 王勵群
Li-chun Wang
石伊蓓
Yi-pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 多餘軸串聯式機器人反位移分析路徑規劃
外文關鍵詞: redundant, serial manipulators, inverse kinematics, trajectory planning
相關次數: 點閱:202下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多餘軸機器人有無限多組構形可到達空間中一指定位置及方位,因此可利用多餘之自由度改善機器人之運動或動力特性以並可選擇各種最佳路徑。目前多餘軸機器人之反位移分析是以最佳化方法搜尋最佳解,此數值方法不但過程困難、複雜而且不一定會得到最佳解。本文首先提出方法將七軸串聯式機器人轉換成特殊六軸串聯式機器人並利用二次多項式進行反位移分析後將各軸位移轉換回原來七軸機器人之軸位移。其次將提出之方法應用於七軸多餘軸機器人之最短路徑規劃。此方法之最大優點為利用局部搜尋即可保證得到最佳解而且還可調整各軸貢獻之權重以得到不同之最佳路徑並同時偵測與奇異點接近之程度。


    A specific position and orientation in task space can be reached by infinite number of configurations for a redundant manipulator. Thus the kinematic or dynamic performance can be significantly improved and different types of optimal paths can be developed in trajectory planning. Optimization methods are commonly used to obtain the inverse kinematic solutions of a redundant manipulator. Those numerical approaches are generally difficult, complicated and might not get the real optimum solutions. This work first presents methods to transform a 7-DOF redundant manipulator into a 6-DOF industrial manipulator and then find the inverse kinematic solutions by solving quadratic equations. The inverse kinematic solutions of the original 7-DOF redundant manipulator can be easily developed from the solutions of the 6-DOF manipulator. The proposed methods are then employed to search for optimal solutions or optimal paths in trajectory planning. Different types of optimal paths can be developed by searching through a small subspace of the joint space, and the closeness to a singular position can be checked simultaneously in the searching process.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文架構 5 第二章 理論基礎 6 2.1 連桿參數定義 6 2.1.1 螺旋矩陣(R矩陣) 7 2.1.2 齊次轉換矩陣(A矩陣) 8 2.2 六軸串聯式機器人反位移分析 8 2.2.1 末三軸相交一點之特殊連桿參數修正 13 2.2.2 五種類型之反位移分析 14 2.3 機器人之賈氏矩陣 19 2.3.1 七軸多餘軸賈氏矩陣行列式值 22 第三章 七軸串聯式多餘軸機器人 23 3.1 特殊七軸串聯式機器人 23 3.2 特殊多餘軸反位移分析 24 3.2.1 多餘軸在首、末軸之特殊七軸反位移分析 24 3.2.2 多餘軸非首、末軸之特殊七軸反位移分析 25 3.3 連桿參數轉換 25 3.3.1 特殊七軸機器人之多餘軸選定 28 3.3.2 多餘軸選定第二軸之參數轉換 28 3.3.3 多餘軸選定第三軸之參數轉換 40 3.3.4 多餘軸選定第四軸之參數轉換 47 第四章 七軸多餘軸機器人之反位移分析與最佳解 52 4.1 七軸機器人反位移分析 52 4.2 路徑規劃 56 4.2.1 最短路徑規劃 57 4.2.2 權重最短路徑規劃 58 4.3 七軸機器人奇異點判定 59 4.4 小結 65 第五章 數值範例 68 5.1 範例一:以第四軸為多餘軸 68 5.2 範例二:以第三軸為多餘軸 76 5.3 範例三:以第二軸為多餘軸 81 5.4 數值範例討論 86 第六章 結論與未來方向 88 參考文獻 90

    參考文獻
    [1] Yoshihiko Nakamura, Advanced Robotics: Redundancy and Optimization, 1st edition, pp.125-131(1990).
    [2] 劉迎春、余躍慶、姜春福,「冗餘度機器人研究動向」,機械設計與研究,第十九卷,第一期,第24-27頁(2003)。
    [3] Whitney, D., ”The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 122, pp.303-309(1972).
    [4] ManJa Kircanski, “Symbolic Singular Value Decomposition for Simple Redundant Manipulators and Its Application to Robot Control”, The International Journal of Robotics Research, pp.328-398(1995).
    [5] Fan-Tien Cheng, Jeng-Shi Chen, and Fan-Chu Kung, “Study and Resolution of Singularities for 7-DOF Redundant Manipulator”, IEEE Transactions on Industrial Electronic, Vol.45, No.3, pp.469-480(1998).
    [6] Liegeois, A., “Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms”, IEEE Transaction on System, Man, and Cybernetics, Vol.7, pp.868-871(1977).
    [7] Kim, S.W., Park, K.B., and Lee, J.J., ”Redundancy Resolution of Robotic Manipulators Using Optimal Kinematic Control”, Proc. IEEE Int. Conf. on Robotics and Automation, pp.683-688(1994).
    [8] J. Gallardo-Alvarado and J. M. Rico-Martinez, “Kinematics of a Hyper-redundant Manipulator by Means of Screw Theory”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol.223, No.4, pp.325-334(2009).
    [9] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-squares Methods,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. ,pp.93-101(1986).
    [10] Shih-Liang Wang and Kenneth J. Waldron, “A Study of the Singular Configurations of Serial Manipulators”, Journal of mechanisms, transmissions, and automation in design, Vol. 109, pp.14-20(1987).
    [11] Ziqiang Mao and T.C. Hsia, “Obstacle Avoidance Inverse Kinematics Solution of Redundant Robots by Neural Networks”, Robotica, Vol. 15, No.1, pp. 3-10(1997).
    [12] Arati S. Deo and Ian D. Walker, “Minimum Effort Inverse Kinematics for Redundant Manipulators”, IEEE Transactions on Robotics and Automation, Vol. 13, No. 5, pp. 767-775(1997).
    [13] Tzu-Chen Liang and Jing-Sin Liu, “An Improved Trajectory Planner for Redundant Manipulators in Constrained Workspace”, Journal of Robotic Systems, Vol. 16, No. 6, pp. 339-351(1999).
    [14] Hanafusa, H., Yoshikawa, T., and Nakamura, Y., “Analysis and Control of Articulated Robot Arms with Redundancy”, Preprints 8th Triennial IFAC World Congress, Vol.14, pp.78-83(1981).
    [15] Klein, C.A. and Huang, C.H., “Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators”, IEEE Transaction on System, Man, and Cybernetics, Vol.13, No.3, pp.245-250(1983).
    [16] Konstantinov, M. S., Markov, M. D., and Nenchev, D. N., “Kinematic Control of Redundant Manipulators”, Proc. of the 11th ISIR, pp.561-568(1981).
    [17] Bentai, M., Morasso, P., and Tagliasco, V., “The Inverse Kinematic Problem for Anthropomorphic Manipulator Arms”, Transactions of the ASME Journal Dynamical Systems, Measurements, and Control, Vol.104, pp.110-113(1982).
    [18] K. Y. Tsai, D. Kohli, and I. P. Hsu, “Admissible Motions of Special Manipulators”, IEEE Proc. Int. Conf. on Robot. And Automat., Vol.10, No.3, pp.386-391(1994).
    [19] 呂易達,「七軸機器人反位移分析之研究」,國立台灣科技大學機械工程研究所,2009年7月碩士論文。
    [20] 歐陽妏青,「工業機器人之奇異點分析」,國立台灣科技大學機械工程研究所,2011年7月碩士論文。
    [21] 黃冠達,「六自由度等向性並聯式機器人設計之探討」,國立台灣科技大學機械工程研究所,2002年7月碩士論文。
    [22] University of Alaska Fairbanks ,
    http://www.alaska.edu/uaf/cem/ece/remote-robotics/remoteHIL.xml

    QR CODE