簡易檢索 / 詳目顯示

研究生: 孫玉龍
Yu-long Sun
論文名稱: 14位元高精度電流導向式數位至類比資料轉換器
A 14-bit High Accuracy Current-Steering DAC
指導教授: 方劭云
Shao-Yun Fang
陳伯奇
Poki Chen 
口試委員: 李泰成
Tai-Cheng Lee
陳信樹
Hsin-Shu Chen
楊清淵
Ching-Yuan Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 不匹配佈局圖形蒙地卡羅模擬佈局自動化電流導向式數位至類比資料轉換器
外文關鍵詞: mismatch, layout pattern, Monte Carlo simulation, layout automation, Current-Steering digital-to-analog conversion.
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目標在於提出一種構建多元件高精度匹配佈局的方法。使用這種方法,工程師將有更大的自由度,依據其創新和電路準確度,來選擇佈局模式。
    本論文設計了一顆14位元電流導向式數位至類比資料轉換器來驗證提出的佈局。這顆14位元電流導向式數位至類比資料轉換器採用混合架構,高位元部分的8位元使用溫度計碼編碼方式,透過一顆解碼器將二進位權重碼解碼為溫度計碼來控制電流源矩陣,該電流源矩陣使用高精度匹配佈局來消除系統性不匹配的影響,同時根據蒙地卡羅模擬確定合適的電流源尺寸,並透過佈局自動化實現電流源矩陣的佈局。低位元部分的6位元使用二進位元權重式編碼方式,透過本論文提出的電流源分割架構,在增加精度的同時保持較快的速度。
    此數位至類比資料轉換器設計是由TSMC 0.18um Mixed-Signal 1P6M製程實現,可以工作在1.8V與2.7V的供應電壓下,後模擬INL 0.034LSB,轉換速率200MHz,晶片核心面積6.62mm2。


    A general methodology to construct highly matched layout pattern for multiple-device is proposed in this thesis. With these general methodologies, engineers will have more degrees of freedom for choosing layout pattern according to their innovations and the degree of circuit precision.
    This thesis Design a 14-bit high accuracy current-steering DAC to implement proposed layout pattern. The DAC presented is segmented architecture. The eight most significant bits are decoded from binary to thermometer code in the thermometer decoder, which steers the unary weighted current source array. The Systematic mismatch of this current source array is canceled by highly matched layout pattern. The size of transistor is decided though Monte Carlo simulation , and the layout of current source array made by Layout automation. The six bit least significant bits are implemented by a current divided circuit proposed by this thesis to enhance accuracy and update rate.
    The DAC would be integrated in TSMC 0.18um Mixed-Signal 1P6M process, running from 2.7V power supply. The integral nonlinearity of post-simulation is 0.034LSB, update rate is 200 MHz and the chip core area is 6.62mm2.

    第一章.緒論 1 1.1研究動機: 1 1.2論文架構: 2 第二章.不匹配及佈局圖形 3 2.1不匹配: 3 2.1.1 隨機性不匹配 4 2.1.2 系統性不匹配 4 2.2多重元件匹配佈局 6 2.3數位至類比資料轉換器匹配佈局 10 第三章. 數位至類比資料轉換器佈局設計 17 3.1適用於二進位權重式數字至類比資料轉換器佈局 17 3.2適用於溫度計碼式數字至類比資料轉換器佈局 20 3.2.1隨機矩陣單元的產生 20 3.2.2不同翻轉方式的比較 24 3.3 模擬程式介紹 27 3.3.1梯度誤差模擬程式介紹 27 3.2.2隨機矩陣模擬程式介紹 29 第四章. 數位至類比資料轉換器電路設計 31 4.1高位元電流源設計 32 4.1.1電路架構介紹 32 4.1.2蒙地卡羅分析 34 4.2低位元電流源設計 37 4.2.1電路架構介紹 37 4.3電流源開關及閂鎖器設計 39 4.3.1電流源開關設計 39 4.3.2閂鎖器與消除突波電路設計 41 4.4解碼器設計 43 4.5訊號同步性調整 45 第五章. 數位至類比資料轉換器佈局實現 46 5.1高位元電流源佈局 47 5.1.1走線規則 47 5.1.2 Binary Tree 49 5.1.3走線層分佈 51 5.1.4佈局自動化 51 5.2低位元電流源佈局 53 5.3電流源開關及閂鎖器佈局 55 5.4佈局平面圖及打線圖 57 第六章. 晶片模擬結果及未來展望 59 6.1靜態模擬結果 59 6.2動態模擬結果 61 6.3晶片效能比較 64 6.4未來展望 65 參考文獻 66

    [1] Hastings A. The art of analog layout[M]. Prentice Hall, 2006.
    [2] Van der Plas G A M, Vandenbussche J, Sansen W, et al. A 14-bit intrinsic accuracy Q 2 random walk CMOS DAC[J]. Solid-State Circuits, IEEE Journal of, 1999, 34(12): 1708-1718.
    [3] Pelgrom M J M, Duinmaijer A C J, Welbers A P G. Matching properties of MOS transistors[J]. IEEE Journal of solid-state circuits, 1989, 24(5): 1433-1439.
    [4] Moran D A J, MacLaren D A, Porro S, et al. Processing of 50nm gate-length hydrogen terminated diamond FETs for high frequency and high power applications[J]. Microelectronic Engineering, 2011, 88(8): 2691-2693.
    [5] Dai X, He C, Xing H, et al. An N th order central symmetrical layout pattern for nonlinear gradients cancellation[C]//Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on. IEEE, 2005: 4835-4838.
    [6] Van Der Wagt J P A, Chu G G, Conrad C L. A layout structure for matching many integrated resistors[J]. Circuits and Systems I: Regular Papers, IEEE Transactions on, 2004, 51(1): 186-190.
    [7] Miki T, Nakamura Y, Nakaya M, et al. An 80-Mhz 8-Bit CMOS D/A Converter[J]. Solid-State Circuits, IEEE Journal of, 1986, 21(6): 983-988.
    [8] Cong Y, Geiger R L. Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays[J]. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 2000, 47(7): 585-595.
    [9] Albertoni F, Cretti F. Method of generating a switching sequence for an unary array of conducting branches and a relative thermometrically decoded digital-to-analog converter: U.S. Patent 6,888,487[P]. 2005-5-3.
    [10] Razavi B. Design of analog CMOS integrated circuits[M]. Tata McGraw-Hill Education, 2002.
    [11] Gupta S, Saxena V, Campbell K A, et al. W-2w current steering dac for programming phase change memory[C]//Microelectronics and Electron Devices, 2009. WMED 2009. IEEE Workshop on. IEEE, 2009: 1-4.
    [12] Croon J A, Rosmeulen M, Decoutere S, et al. An easy-to-use mismatch model for the MOS transistor[J]. Solid-State Circuits, IEEE Journal of, 2002, 37(8): 1056-1064.
    [13] Moon J, Song M, Shin S, et al. Design of a laminated current cell relocation 12-bit CMOS D/A converter with a high output impedance technique and a merged switching logic[J]. Analog Integrated Circuits and Signal Processing, 2010, 63(3): 407-414.
    [14] Li X, Wei Q, Xu Z, et al. A 14 Bit 500 MS/s CMOS DAC Using Complementary Switched Current Sources and Time-Relaxed Interleaving DRRZ[J]. 2014.
    [15] Tseng W H, Fan C W, Wu J T. A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With 70 dB SFDR up to 500 MHz[J]. Solid-State Circuits, IEEE Journal of, 2011, 46(12): 2845-2856.
    [16] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration,” IEEE J. Solid State Circuits, vol. 37, no. 2, pp. 183–190, Feb. 2002.
    [17] Barak Yaakobovitz, Yoel Cohen, Yoed Tsur, “Line edge roughness detection using deep UV light scatterometry,” Elsevier: Microelectronic Engineering 84, pp. 619-625, 2007.
    [18] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3063–3070, Dec. 2006.
    [19] Lin C H, Bult K. A 10-b, 500-MSample/s CMOS DAC in 0.6 mm 2[J]. Solid-State Circuits, IEEE Journal of, 1998, 33(12): 1948-1958.

    [20] Borremans M, Van den Bosch A, Steynaert M, et al. A low power, 10-bit CMOS D/A converter for high speed applications[C]//Custom Integrated Circuits, 2001, IEEE Conference on. IEEE, 2001: 157-160.
    [21] Kinget P R. Device mismatch and tradeoffs in the design of analog circuits[J]. Solid-State Circuits, IEEE Journal of, 2005, 40(6): 1212-1224.
    [22] Deveugele J, Steyaert M S J. A 10-bit 250-MS/s binary-weighted current-steering DAC[J]. Solid-State Circuits, IEEE Journal of, 2006, 41(2): 320-329.
    [23] Shen D L, Lai Y C, Lee T C. A 10-bit binary-weighted DAC with digital background LMS calibration[C]//Solid-State Circuits Conference, 2007. ASSCC'07. IEEE Asian. IEEE, 2007: 352-355.
    [24] Azhari S J, Monfaredi K, Amiri S. A 12-bit, low-voltage, nanoampere-based, ultralow-power, ultralow-glitch current-steering DAC for HDTV[J]. International Nano Letters, 2012, 2(1): 1-7.]
    [25] Deveugele J, Steyaert M S J. A 10-bit 250-MS/s binary-weighted current-steering DAC[J]. Solid-State Circuits, IEEE Journal of, 2006, 41(2): 320-329.
    [26] Van der Plas G, Vandenbussche J, Gielen G G E, et al. A layout synthesis methodology for array-type analog blocks[J]. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2002, 21(6): 645-661.

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE