簡易檢索 / 詳目顯示

研究生: 陳冠宏
Kuan-Hung Chen
論文名稱: 隨機剪力波速對剛性基礎垂直位移可靠度之影響
The Effects of Random Shear-Wave Velocities on the Reliability of Vertical Displacements of Rigid Foundations
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 廖國偉
Kuo-Wei Liao
陳瑞華
Rwey-Hua Cherng
施俊揚
Jun-Yang Shi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 土壤與結構互制蒙地卡羅模擬可靠度
外文關鍵詞: Soil-structure interaction, Monte Carlo simulation, Reliability
相關次數: 點閱:206下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出互制反應模擬法,以土壤剪力波速為隨機參數,針對垂直簡諧外力作用下之彈性半空間土壤與剛性基礎互制系統,進行動態反應分析及可靠度評估。分析結果顯示,基礎位移累積機率密度函數與蠻力計算法比較,其誤差可控制於5%以下,但互制反應模擬法可大幅縮減運算時間。本研究亦發現當土壤具有較高剪力波速、剛性基礎具有較低質量及外力頻率較低時,土壤剪力波速變異性對基礎位移振幅有顯著影響。另外,若採用平均剪力波速於剛性圓盤基礎與均勻土壤之互制系統中,探討簡諧外力引致之基礎垂直位移,以此位移的三倍作為容許基礎位移振幅上限時,則剛性基礎受垂直簡諧外力之位移可靠度將趨近於100%。


    This study proposes the Response Method to analyze the dynamic responses and reliability of the foundation displacements in the interaction system between an elastic half-space soil and a rigid foundation. The soil- foundation system is subjected to a vertical harmonic loading considering the uncertainty of shear-wave velocity of soil. It shows that there is 5% error of the cumulative probability distribution as compared to the Brute Force Method. However, the Response Method can reduce computational time substantially. This study also found that the variability of shear-wave velocity has significant influences on the foundation displacements for the system with higher shear-wave velocity of soil, smaller foundation mass, and lower loading frequencies. Moreover, this study conducts a reliability assessment based on an allowable displacement amplitude which equals three-times displacements that computed by considering an average of random shear-wave velocities of soil. In such cases, a level of reliability is found to approach 100% for restricting the vertical foundation displacements induced by a harmonic loading lower than the allowable amplitude.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2研究內容 2 第二章 文獻回顧 3 2.1剛性圓盤基礎之垂直振動理論 3 2.2三維度土壤與結構互制分析程式SASSI 6 2.3土壤之不確定性 8 2.4小結 10 第三章 基礎動態反應機率密度函數之分析 11 3.1古典機率理論法 11 3.2互制反應模擬法 12 3.2.1互制反應模擬法計算流程 13 3.2.2互制反應模擬法外插函數 14 3.3蠻力計算法 19 3.4小結 20 第四章 剛性基礎垂直位移振幅可靠度分析 21 4.1基礎-土壤互制系統之分析參數與有限元素模型 21 4.2基礎位移振幅之機率密度函數 24 4.3基礎位移振幅之變異係數 27 4.4基礎位移振幅之可靠度分析 29 4.4.1容許基礎位移振幅 30 4.4.2可靠度指標與分析結果 31 4.5小結 36 第五章 結論與建議 37 5.1結論 37 5.2建議 39 參考文獻 40

    [1] Cao, Z., Wang, Y., and Li, D., "Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis," Zhejiang University, Zhejiang, pp. 1-51, 2017.
    [2] 雒紅麗、韓曉雷,「岩土工程可靠性分析的特點及方法綜述」,西部探礦工程,第十八卷,第三期,第38-40頁,2009。
    [3] Andrieu, C.N., Doucet, A., and Jordan, M.I., "An Introduction to MCMC for Machine Learning," Machine Learning, Vol. 50, No. 1, pp. 5-43, 2003.
    [4] Richard, F.E., Woods, R.E. and Hall, J.R., Jr, "Vibration of soils and foundations," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970.
    [5] Richart, F.E., and Whitman, R.V., "Comparison of footing vibration tests with theory," J. Soil Mech. and Found. Div., ASCE, Vol. 93, No. SM 6, pp.143-168, 1967.
    [6] Reissner, E., "Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes," Ingenieur-Archiv, Vol. 7, No. 6, pp. 381-396, 1936.
    [7] Hsieh, T.K., "Foundation vibrations," Proc. Institution of Civil Engineers, Vol. 22, No. 2, pp. 211-226, 1962.
    [8] Lysmer, J., "Vertical motion of rigid footings," Dept. of Civil Eng., University of Michigan, Ph.D. Dissertation, 1965.

    [9] Luco, J.E., and Westmann, R.A., "Dynamic response of circular footings," J. of Eng. Mech., ASCE, Vol. 97, No. EM 5, pp. 1381-1395, 1971.
    [10] Veletsos, A.S., and Wei, T.Y., "Lateral and rocking vibration of footings," Earthquake Eng. and Structural Dyn., Vol.97, No. SM 9, pp.1227-1248, 1971.
    [11] Novák, M., and Beredugo, Y.O., "Vertical vibration of embedded footings," J. Soil Mech. and Found. Div., Vol. 98, No. SM 12, 1972.
    [12] Lysmer, J., Tabatabaie-Raissi, M., Tajirian, F., Vahdani, S., and Ostadan, F., "SASSI: A system for analysis of soil-structure interaction," University of California, Berkeley, 1981.
    [13] Lysmer, J., "Analytical procedures in soil dynamics," Geotechnical. Eng. Div. Specialty Conf. on Earthquake Eng. and Soil Dyn., ASCE, Pasadena, California, Vol. 80, pp. 12243, 1978.
    [14] Phoon, K.K., "Towards reliability-based design for geotechnical engineering," Special Lecture for Korean Geotechnical Society, Seoul, Vol. 9, pp. 1-23, 2004.
    [15] Lutes, L.D., Sarkani, S., and Jin, S., "Response variability of an SSI system with uncertain structural and soil properties," Eng. Structures, Vol. 22, No. 6, pp. 605-620, 2000.
    [16] Wolf, J.P., "Spring‐dashpot‐mass models for foundation vibrations," Earthquake Eng. and Structural Dyn., Vol. 26, No. 9, pp. 931-949, 1997.

    [17] Chaudhuri, S.R., and Gupta, V.K., "Variability in seismic response of secondary systems due to uncertain soil properties," Eng. Structures, Vol. 24, No. 12, pp. 1601-1613, 2002.
    [18] Moghaddasi, M., Cubrinovski, M., Chase, J.G., Pampanin, S., and Carr, A., "Probabilistic evaluation of soil–foundation–structure interaction effects on seismic structural response," Earthquake Eng. and Structural Dyn., Vol. 40, No. 2, pp. 135-154, 2011.
    [19] Chen, S.S., and Shi, J.Y., "Simplified model for vertical vibrations of surface foundations," J. of geotechnical and geoenvironment Eng., Vol. 132, No. 5, pp. 651-655, 2006.
    [20] Ang A.H.S., and Tang, W.H., "Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering," Wiley, 2007.
    [21] Building Seismic Safety Council (BSSC), "The 2003 NEHRP recommended provisions for new buildings and other structures," Part I: (Provisions) and Part II (Commentary), FEMA 450, 2003.
    [22] 陳煌銘,振動基礎分析與設計,科技圖書股份有限公司,文笙書局,台北,第169-186頁,1997。

    QR CODE