簡易檢索 / 詳目顯示

研究生: 宋采軒
Cai-Syuan Sung
論文名稱: 接枝改質之兩性型樹枝狀高分子/聚醯亞胺規則貫穿孔洞薄膜應用於油水分離
Grafting modified amphiphilic dendron/polyimide regular through-pore membrane for oil-water separation
指導教授: 胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
孫一明
Yi-Ming Sun
黃書賢
Shu-Hsien Huang
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 兩性型樹枝狀高分子規則貫穿孔薄膜breath-figures法表面接枝改質油水分離乳化液分離
外文關鍵詞: Amphiphilic dendron, Membrane with regular-through pore, Hydrophilic membrane, Breath-figures method, Oily water separation, Emulsion separation
相關次數: 點閱:455下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來工業發展快速,導致大量含油廢水進入環境對生態產生嚴重威脅,因此薄膜油水分離技術日漸受到重視。本研究以濾紙為基材,使用三氯甲烷作為溶劑將兩性型樹枝狀高分子與聚醯亞胺(polyimide, PI)進行混摻形成鑄膜液,鑄膜液以液滴塗佈法(Drop Casting method)均勻塗佈於濾紙表面,再藉由Breath -Figure法在濾紙基材表面形成規則貫穿孔洞薄膜。薄膜表面上的azetidine-2,4-dione會與帶有一級胺官能基的化合物反應開環,藉由此反應可將聚乙烯亞胺(polyethyleneimine, PEI)接枝於薄膜表面,胺基被用於調控規則貫穿孔洞薄膜表面的親水性,規則貫穿孔洞薄膜表面的接枝程度會隨PEI的分子量及反應時間變化而改變進而形成不同親水性的薄膜,規則貫穿孔洞薄膜呈現優異的水包油乳化液分離效能。在PEI 10000改質時間6 hr的最佳條件下,改質後的均一貫穿孔洞膜具有親水性及水下超疏油特性,藉由其表面親水性,以抽氣過濾的方式分離水包油乳化液,乳化液通量可達49518.4 LMH/bar,截流率可達99.1%。


In recent years, industrial development has produced huge amount oil containing waste water so the oil-water separation has received more attention. In this work, commercial polyimide/amphiphilic dendron dissolved in chloroform as the casting solution to form regular through-pore layer on the surface of filter paper via Breath- figure method. Amine compounds with varied molecular weight graft on the dendron to control the hydrophilicity of the membrane. Azetidine-2,4-dione on the surface reacts with a compound with primary amine functional group with open ring reaction, and this reaction allows the grafting polyethyleneimine (polyethyleneimine, PEI) to the membrane. The molecular weight of PEI and the modified reaction time are related with the hydrophilicity. The optimal modification condition is PEI 10000 and 6 h reaction time. The modified membrane shown hydrophilicity and underwater super-oleophobic properties. Using the vacuum filtration to separate the oil in water emulsion, the flux can reach 49518.41 LMH/bar, and the rejection can reach 99.14%.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、緒論 1 1.1背景 1 1.2油水分離 1 1.3研究動機 1 第二章、 文獻回顧 3 2.1 Breath figure方法與機制 3 2.2應用Breath figure法製造蜂窩狀孔洞 7 2.3 Poly(urethane/malonamide) dendron 14 2.4聚乙烯亞胺(Polyethyleneimine, PEI) 18 2.5表面親疏水性 19 2.5.1接觸角 19 2.5.2 Young’s equation 20 2.5.3 Wenzel equation 21 2.5.4 Cassie-Baxter equation 22 2.6薄膜分離處理oil-in-water乳化液 23 第三章、 研究方法與步驟 30 3.1研究流程圖 30 3.2實驗材料 31 3.3實驗儀器 32 3.4實驗方法 33 3.4.1薄膜製備 33 (1) 鑄膜液製備 33 (2) 均一貫穿孔洞微濾膜製備 34 (3) 親水改質均一貫穿孔洞微濾膜製備 34 (4) 油水乳化液製備 37 3.4.2薄膜鑑定 37 (1) 全反射式傅立葉轉換紅外光線光譜(Fourier-transform infrared spectroscopy, ATR- FTIR) 37 (2) 水滴接觸角量測儀(Water Contact angle, WCA) 38 (3) 高解析場發射掃描式電子顯微鏡(Field Emission Scanning Electron, FE-SEM) 38 3.4.3效能測試 38 (1) 油水分離 38 (2) 乳化液分離 39 (3) 3D數位光學顯微鏡(Optical Microscope,OM) 40 (4) 動態光散射粒徑儀(Dynamic light scattering, DLS) 40 (5) 總有機碳分析儀(Total organic carbon, TOC) 41 (6) 週期性乳化液分離測試(Cycle of emulsion separation test) 41 第四章、 結果與討論 43 4.1 固定改質時間探討PEI分子量變化對表面特性之影響 43 4.1.1薄膜表面型態 43 4.1.2薄膜性質鑑定 44 4.2固定改質時間探討PEI分子量變化對分離效能之影響 47 4.3反應時間對於均一貫穿孔洞微濾親水膜之表面特性與油/水分離效能之影響 50 4.3.1薄膜表面型態 50 4.3.2薄膜性質鑑定 51 4.4改質時間對於PEI 10000親水薄膜油/水分離效能之影響 57 4.4.1最佳化條件效能測試 57 4.5重複性及耐久性測試 64 4.6本研究與文獻之油水分離效能比較 66 4.7均一貫穿孔微濾薄膜之water-in-oil乳化液分離 66 4.7.1薄膜表面特性 66 4.7.2薄膜性質鑑定 67 4.8以十八烷基胺在不同改質時間之分離效能 69 第五章、 結論 73 第六章、 參考文獻 74

[1] Rayleigh, Breath Figures, Nature 86(2169) (1911) 416-417.
[2] G. Widawski, M. Rawiso, B. François, Self-organized honeycomb morphology of star-polymer polystyrene films, Nature 369(6479) (1994) 387-389.
[3] M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film, Science 292(5514) (2001) 79-83.
[4] D. Beysens, Dew nucleation and growth, Comptes Rendus Physique 7(9-10) (2006) 1082-1100.
[5] M.H. Stenzel, C. Barner‐Kowollik, T.P. Davis, Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures, Journal of Polymer Science Part A: Polymer Chemistry 44(8) (2006) 2363-2375.
[6] K.H. Wong, M. Hernández-Guerrero, A.M. Granville, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, Water-assisted formation of honeycomb structured porous films, Journal of Porous Materials 13 (2006) 213-223.
[7] T. Nishikawa, M. Nonomura, K. Arai, J. Hayashi, T. Sawadaishi, Y. Nishiura, M. Hara, M. Shimomura, Micropatterns based on deformation of a viscoelastic honeycomb mesh, Langmuir 19(15) (2003) 6193-6201.
[8] A. Böker, Y. Lin, K. Chiapperini, R. Horowitz, M. Thompson, V. Carreon, T. Xu, C. Abetz, H. Skaff, A. Dinsmore, Hierarchical nanoparticle assemblies formed by decorating breath figures, Nature materials 3(5) (2004) 302-306.
[9] L. Song, R.K. Bly, J.N. Wilson, S. Bakbak, J.O. Park, M. Srinivasarao, U.H. Bunz, Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid rod‐polymers, Advanced Materials 16(2) (2004) 115-118.
[10] H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Preparation of honeycomb-patterned polyimide films by self-organization, Langmuir 19(15) (2003) 6297-6300.
[11] S.D. Angus, T.P. Davis, Polymer surface design and infomatics: Facile microscopy/image analysis techniques for self-organizing microporous polymer film characterization, Langmuir 18(24) (2002) 9547-9553.
[12] A. Bolognesi, C. Mercogliano, S. Yunus, M. Civardi, D. Comoretto, A. Turturro, Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography, Langmuir 21(8) (2005) 3480-3485.
[13] M.H. Stenzel-Rosenbaum, T.P. Davis, V. Chen, A.G. Fane, Synthesis of poly (styrene) star polymers grown from sucrose, glucose, and cyclodextrin cores via living radical polymerization mediated by a half-metallocene iron carbonyl complex, Macromolecules 34(16) (2001) 5433-5438.
[14] M.H. Stenzel, T.P. Davis, A.G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process, Journal of Materials Chemistry 13(9) (2003) 2090-2097.
[15] T. Nishikawa, R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, M. Shimomura, Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface, Langmuir 18(15) (2002) 5734-5740.
[16] L.A. Connal, P.A. Gurr, G.G. Qiao, D.H. Solomon, From well defined star-microgels to highly ordered honeycomb films, Journal of Materials Chemistry 15(12) (2005) 1286-1292.
[17] W. Madej, A. Budkowski, J. Raczkowska, J. Rysz, Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience, Langmuir 24(7) (2008) 3517-3524.
[18] M.S. Park, W. Joo, J.K. Kim, Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition, Langmuir 22(10) (2006) 4594-4598.
[19] M. Orlov, I. Tokarev, A. Scholl, A. Doran, S. Minko, pH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure, Macromolecules 40(6) (2007) 2086-2091.
[20] K.-i. Hiwatari, T. Serizawa, F. Seto, A. Kishida, Y. Muraoka, M. Akashi, Graft copolymers having hydrophobic backbone and hydrophilic branches XXXIV. Fabrication and control of honeycomb structure prepared from amphiphilic graft copolymers, Polymer journal 33(9) (2001) 669-675.
[21] L. Roszol, T. Lawson, V.r. Koncz, Z.n. Noszticzius, M. Wittmann, T.s. Sarkadi, P.l. Koppa, Micropatterned Polyvinyl Butyral Membrane for Acid− Base Diodes, The Journal of Physical Chemistry B 114(43) (2010) 13718-13725.
[22] J. Mansouri, E. Yapit, V. Chen, Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach, Journal of membrane science 444 (2013) 237-251.
[23] A. Munoz-Bonilla, M. Fernandez-Garcia, J. Rodriguez-Hernandez, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach, Progress in Polymer Science 39(3) (2014) 510-554.
[24] J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating, Polymer 45(2) (2004) 447-452.
[25] C. Wang, Y. Mao, D. Wang, Q. Qu, G. Yang, X. Hu, Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties, Journal of Materials Chemistry 18(6) (2008) 683-690.
[26] A. Muñoz‐Bonilla, E. Ibarboure, E. Papon, J. Rodriguez‐Hernandez, Engineering polymer surfaces with variable chemistry and topography, Journal of Polymer Science Part A: Polymer Chemistry 47(9) (2009) 2262-2271.
[27] A.S. de León, A. del Campo, M. Fernandez-Garcia, J. Rodriguez-Hernandez, A. Muñoz-Bonilla, Hierarchically structured multifunctional porous interfaces through water templated self-assembly of ternary systems, Langmuir 28(25) (2012) 9778-9787.
[28] C.X. Cheng, Y. Tian, Y.Q. Shi, R.P. Tang, F. Xi, Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers, Langmuir 21(14) (2005) 6576-6581.
[29] C.-C. Chang, T.-Y. Juang, W.-H. Ting, M.-S. Lin, C.-M. Yeh, S.A. Dai, S.-Y. Suen, Y.-L. Liu, R.-J. Jeng, Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers, Materials Chemistry and Physics 128(1-2) (2011) 157-165.
[30] S.A. Dai, T.Y. Juang, C.P. Chen, H.Y. Chang, W.J. Kuo, W.C. Su, R.J. Jeng, Synthesis of N‐aryl azetidine‐2, 4‐diones and polymalonamides prepared from selective ring‐opening reactions, Journal of applied polymer science 103(6) (2007) 3591-3599.
[31] W.-H. Ting, C.-C. Chen, S.A. Dai, S.-Y. Suen, I.-K. Yang, Y.-L. Liu, F.M. Chen, R.-J. Jeng, Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation, Journal of Materials Chemistry 19(27) (2009) 4819-4828.
[32] Y. Zhu, W. Xie, J. Li, T. Xing, J. Jin, pH-Induced non-fouling membrane for effective separation of oil-in-water emulsion, Journal of Membrane Science 477 (2015) 131-138.
[33] M.D. Ong, I. Vasquez, B. Alvarez, D.R. Cho, M.B. Williams, D. Vincent Jr, M.A. Ali, N. Aich, A.H. Pinto, M.R. Choudhury, Modification of cellulose acetate microfiltration membranes using graphene oxide–polyethyleneimine for enhanced dye rejection, Membranes 13(2) (2023) 143.
[34] C.H. Kung, P.K. Sow, B. Zahiri, W. Mérida, Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities, Advanced Materials Interfaces 6(18) (2019) 1900839.
[35] T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London (95) (1805) 65-87.
[36] S. Han, R. Yang, C. Li, L. Yang, The wettability and numerical model of different silicon microstructural surfaces, Applied Sciences 9(3) (2019) 566.
[37] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry 28(8) (1936) 988-994.
[38] A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society 40 (1944) 546-551.
[39] W. Zhang, Y. Zhu, X. Liu, D. Wang, J. Li, L. Jiang, J. Jin, Salt‐induced fabrication of superhydrophilic and underwater superoleophobic PAA‐g‐PVDF membranes for effective separation of oil‐in‐water emulsions, Angewandte Chemie International Edition 53(3) (2014) 856-860.
[40] G. Zhang, X. Jia, J. Xing, S. Shen, X. Zhou, J. Yang, Y. Guo, R. Bai, A facile and fast approach to coat various substrates with poly (styrene-co-maleic anhydride) and polyethyleneimine for oil/water separation, Industrial & Engineering Chemistry Research 58(42) (2019) 19475-19485.
[41] Y. Deng, G. Zhang, R. Bai, S. Shen, X. Zhou, I. Wyman, Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation, Journal of Membrane Science 569 (2019) 60-70.
[42] G. Zin, J. Wu, K. Rezzadori, J.C.C. Petrus, M. Di Luccio, Q. Li, Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine, Separation and Purification Technology 212 (2019) 641-649.
[43] C. Wei, L. Lin, Y. Zhao, X. Zhang, N. Yang, L. Chen, X. Huang, Fabrication of pH-sensitive superhydrophilic/underwater superoleophobic poly (vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM dendrimers) membranes for oil–water separation, ACS applied materials & interfaces 12(16) (2020) 19130-19139.
[44] X. Zeng, J. Lin, W. Cai, Q. Lu, S. Fu, J. Li, X. Yan, X. Wen, C. Zhou, M. Zhang, Fabrication of superhydrophilic PVDF membranes by one-step modification with eco-friendly phytic acid and polyethyleneimine complex for oil-in-water emulsions separation, Chemosphere 264 (2021) 128395.
[45] C.E. Hoyle, C.N. Bowman, Thiol–ene click chemistry, Angewandte Chemie International Edition 49(9) (2010) 1540-1573.
[46] J. Hu, S. Yuan, W. Zhao, C. Li, P. Liu, X. Shen, Fabrication of a superhydrophilic/underwater superoleophobic PVDF membrane via thiol–ene photochemistry for the oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects 664 (2023) 131138.
[47] C.H. Wu, C.S. Lu, W.L. Chen, S.H. Tung, R.J. Jeng, Honeycomb surface with shape memory behavior fabricated via breath figure process, Macromolecular Materials and Engineering 303(2) (2018) 1700433.
[48] Y. Gu, B. Zhang, Z. Fu, J. Li, M. Yu, L. Li, J. Li, Poly (vinyl alcohol) modification of poly (vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method, Journal of Membrane Science 619 (2021) 118792.
[49] Y. Liu, J. Guan, Y. Su, R. Zhang, J. Cao, M. He, J. Yuan, F. Wang, X. You, Z. Jiang, Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets, Journal of Materials Chemistry A 7(44) (2019) 25458-25466.
[50] X. Cheng, Z. Sun, X. Yang, Z. Li, Y. Zhang, P. Wang, H. Liang, J. Ma, L. Shao, Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil–water emulsion separation, Journal of Materials Chemistry A 8(33) (2020) 16933-16942.
[51] Y. Wang, J. Wang, Y. Ding, S. Zhou, F. Liu, In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion, Journal of Membrane Science 621 (2021) 119005.
[52] J. Zhang, X. Pan, Q. Xue, D. He, L. Zhu, Q. Guo, Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion, Journal of Membrane Science 532 (2017) 38-46.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2025/08/26 (校外網路)
全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE