簡易檢索 / 詳目顯示

研究生: 陳衍君
Yen-Chun Chen
論文名稱: 用於小型無舵式自主水下載具方向控制之質心轉移機構
Mass Shifter Mechanism for the Direction Control of Small Rudderless Autonomous Underwater Vehicl
指導教授: 李敏凡
Min-Fan Ricky Lee
口試委員: 李敏凡
Min-Fan Ricky Lee
蔡明忠
Ming-Jong Tsai
湯梓辰
Joni Tzuchen Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 52
中文關鍵詞: 無人水下載具無人系統移動機器人機器人動作機器人控制
外文關鍵詞: Unmanned underwater vehicles, autonomous systems, mobile robots, robot motion, robot control
相關次數: 點閱:364下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來自主式水下載具已被應用於水下調查和監視,常被用於各種深度的水域中的例行性或具有危險的任務。為了適合各種可能的水下環境和期間的使用,無方向舵與升降舵的設計將簡化船身外型與控制方法,通過減少安裝方向舵或升降舵等活動零件的安裝,避免船體上的間隙來增強水下載具的防漏性。本研究的目的是開發一種新的水下載具控制方法,用於巡航目的的水下設備。本文提出了一種質量轉移機構用於操控小型自主式水下載具的方向控制。配備了兩個可在固定軌道上移動的配重,通過將兩個配重移動到預定的位置來改變該水下載具的重心位置,從而改變偏航角和俯仰角而達到對自主式水下載具方向控制的目的。一具Arduino控制器被用於控制自主式水下載具系統內部的質量轉移機構與相關的外部感測器的資料讀取以利於之後進一步的運用。經過測試,在前進與下潛上浮的功能上都達到設計的目標。而因在配重質量相對於系統總質量的比例則需要再調整,以便使產生用於轉向的轉矩達到足以使得自主式水下載具的轉向的功能。對於此種方向控制方式,配重相對於系統重量比例與移動軌跡的設計,是此種控制方法的重要關鍵也是將來的研究方向。


    Autonomous underwater vehicles have been used in underwater surveys and monitoring, and are often used for routine or dangerous tasks in the waters of various depths. To be suitable for various underwater environments and periods of use, an autonomous underwater vehicle without rudder and elevator will simplify the hull design and control method, also avoid gaps and enhance the leak-proof. This research proposes a mass shifter mechanism for direction control of a small autonomous underwater vehicle by moving two counterweights on fixed trajectories. These two counterweights move and change the position of the center of gravity to generate torque. The torque changes the yaw angle and pitch angle to control the direction. An Arduino controller is used to control the mechanism and collect the data from sensors. After testing, the surfacing and the diving functions are achieve. And it is necessary to adjust the ratio of the mass of the counterweights to the total the system to generate sufficient torque to steer the autonomous underwater vehicle. Based on the results, the design of the weight ratio of the counterweight relative to the system weight and the movement trajectory are key design factors to this control method.

    摘要..........................................I ABSTRACT.....................................II 謝誌........................................III Contents.....................................IV Figure Contents...............................V Table Contents..............................VII Chapter 1 Introduction........................1 Chapter 2 Method..............................6 2.1 Principles................................6 2.2 Mechanical Design........................16 2.3 Control Concept..........................27 Chapter 3 Results............................39 Chapter 4 Discussion.........................42 Chapter 5 Conclusion and Future Research.....47 References...................................49

    [1] K. D. Schramm, M. J. Marnane, T. S. Elsdon, “A comparison of stereo-BRUVs and stereo-ROV techniques for sampling shallow water fish communities on and off pipelines,” Marine Environmental Research, vol. 162, Dec. 2020, Art. no. 105198.
    [2] M. S. Love, et al., “A comparison of two remotely operated vehicle (ROV) survey methods used to estimate fish assemblages and densities around a California oil platform,” PLOS ONE, vol. 15, No. 11, November 2020, Art. no. e0242017.
    [3] D. Partridge, T. Friedrich, and B. S. Powell, “Reanalysis of the PacIOOS Hawaiian Island ocean forecast system, an implementation of the regional ocean modeling system v3.6,” Geoscientific Model Development, vol. 12, No. 1, pp. 195-213, Jan. 2019.
    [4] K. B. Karnauskas, J. Jakoboski, et al., “The Pacific Equatorial Undercurrent in Three Generations of Global Climate Models and Glider Observations,” Journal of Geophysics Research, vol. 125, No. 11, Nov. 2020, Art. no. e2020JC016609.
    [5] I. Kostakis, R. Rottgers, and A. Orkney, “Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, No. 2181, Oct. 2020, Art. no. 20190367.
    [6] A. Billings, C. Kaiser, C.M. Young, L.S. Hiebert, E. Cole, K.S. Wagner, and L.V. Dover, “SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system,” Deep Sea Research Part II: Topical Studies in Oceanography, vol. 137. pp. 297-306, Mar. 2017.
    [7] M. Messié, I. Shulmanc, S. Martinid, and S. Haddocka, “Using fluorescence and bioluminescence sensors to characterize auto- and heterotrophic plankton communities,” Progress in Oceanography, vol. 171, pp. 76-92, Feb. 2019.
    [8] T. Dodson, T. M. Grothues, J.H. Eiler, J.A. Dobarro, and R. Shome, “Acoustic-telemetry payload control of an autonomous underwater vehicle for mapping tagged fish”. Limnology and Oceanography-Methods, vol. 12. no. 11. pp. 760-772. Nov. 2018.
    [9] W. Tian, B. Song, and H. Ding, “Numerical research on the influence of surface waves on the hydrodynamic performance of an AUV”. Ocean Engineering, vol.183, pp. 40-56, Jul. 2019.
    [10] Z.D. Li, et al., “Hydrodynamic calculation and analysis of a complex-shaped underwater robot based on computational fluid dynamics and prototype test”. Advance in Mechanical Engineering, vol. 9, no. 11, Nov. 2017, Art. No. 1687814017734500.
    [11] Y. S. Zhu, C. J. Yang, S. J. Wu, Q. LI, and X. L. Xu, “A space-saving steering method for underwater gliders in lake monitoring,” Frontiers of Information Technology & Electronic Engineering, vol. 16, No. 7, pp. 485-497, Mar. 2017.
    [12] M.W. McBride and F.S. Archibald, “Propulsion of underwater vehicles using differential and vectored thrust,” U.S. Patent US6 581 537 B2, Jun. 23, 2002.
    [13] L. B. Geng, Z. G. Hu, Y. Lin, “Hydrodynamic characteristic of synthetic jet steered underwater vehicle,” Applied Ocean Research, vol. 70, pp. 1-13, Jan. 2017.
    [14] M.W. McBride and F.S. Archibald, “Buoyancy control systems and methods,” U.S. Patent US 7 921 795B2, Apr. 12, 2011.
    [15] N. H. Tran, H. S. Choi, J. H. Bae1, J. Y. Oh, and J. R. Cho, “Design, Control, and Implementation of a New AUV Platform with a Mass Shifter Mechanism,” International Journal of Precision Engineering and Manufacturing, vol. 16, No. 7, pp. 1599-1608, Jun. 2015.
    [16] N. H. Tran, H. S. Choi, J. H. Bae1, J. Y. Oh, and J. R. Cho, “Design, control, and implementation of a new AUV platform with a mass shifter mechanism,” International Journal of Precision Engineering and Manufacturing, vol. 16, No. 7, pp. 1599-1608, Jun. 2015.
    [17] D.A. Paley, F. Zhang and N. E. Leonard, “Cooperative control for ocean Sampling: The glider coordinated control system,” IEEE Transactions on Control Systems Technology, vol. 16, pp. 735-744. Jul. 2008.
    [18] W. Cai, M. Zhang, and Y.R. Zheng, “Task assignment and path planning for multiple autonomous underwater vehicles using 3D Dubins curves,” Sensors, vol. 17, no.7, Jul. 2017, Art. no. 1607.
    [19] X. Liu, M. Zhang, and E. Rogers, “Trajectory tracking control for autonomous underwater vehicles based on fuzzy re-planning of a local desired trajectory,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11657–11667, Dec. 2019.
    [20] Z. P. Yan, P. Gong, W. Zhang, et al., “Autonomous underwater vehicle vision guided docking experiments based on L-shaped light array,” IEEE Access, vol. 7, no. 12, pp. 72567-72576, 2019.
    [21] Z. P. Yan, J. Z. Zhang, Z. W. Yang, and J. L. Tang, “Two-dimensional optimal path planning for autonomous underwater vehicle using a whale optimization algorithm,” Concurrency and Computation: Practice and Experience, Dec. 2020, Art. no. e6140.
    [22] M. Sung, J. Kim, H. Cho, M. Lee, and S. C. Yu, “Underwater-sonar-image-based 3D point cloud reconstruction for high data utilization and object classification using a neural network,” Electronics, vol. 9, no. 11, Nov. 2020, Art. no. 1763.
    [23] Y. Kim and J. Ryou, “A study of sonar image stabilization of unmanned surface vehicle based on motion sensor for inspection of underwater infrastructure,” Remote Sensing, vol.12, no. 21, Nov. 2020.
    [24] H.P. Yu, Z.Y. Li, D.L. Li, and T.S. Shen, “Bottom detection method of side-scan sonar image for AUV missions,” Complexity, vol. 2020, Oct. 2020.
    [25] S.S. Fan et al., “AUV docking based on USBL navigation and vision guidance,” Journal of Marine Science and Technology, vol. 24, no. 3, pp. 673-685, Sep. 2019.
    [26] M. M. Bai et al., “A novel mixture distributions-based robust kalman filter for cooperative localization,” IEEE Sensors Journal, vol. 20, no. 24, pp. 14994-15006, Dec. 2020.
    [27] A. Karmozdi, M. Hashemi, H. Salarieh, and A. Alasty, “INS-DVL navigation improvement using rotational motion dynamic model of AUV,” IEEE Sensors Journal, vol. 20, no. 23, pp. 14329-14336, Dec. 2020.
    [28] D. X. Ji, F. U. Rehman, S. A. Ajwad, K. Shahani, S. Sharma, R. Sutton, S. Li, Z. Y. Ye, H. Zhu, and S. Q. Zhu, “Design and development of autonomous robotic fish for object detection and tracking,” International Journal of Advanced Robotics Systems, vol. 17, no. 23, pp. 1-11, May. 2020.
    [29] M. W. Lin and C. J. Yang, “AUV docking method in a confined reservoir with good visibility,” Journal of Intelligence and Robotics Systems, vol. 100, no. 1, pp. 349-361, Apr. 2020.
    [30] L. J. Zhong, D. J. Li, M. W. Lin, R. Lin, and C. J. Yang, “A fast binocular localization method for AUV docking,” Sensors, vol. 19, no. 7, Apr. 2019. Art. no. 1735.
    [31] J. L. Meriam and L. G. Kraige. “Plane kinetics of rigid bodies,” in Engineering Mechanics Dynamics, 7th ed., vol. 2. Hoboken, NJ: John Wiley & Sons, Inc., 2015, pp.411-421.

    無法下載圖示 全文公開日期 2023/02/08 (校內網路)
    全文公開日期 2026/02/08 (校外網路)
    全文公開日期 2023/02/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE